
Mathematics 152 — Spring 1999

These notes are brief. Experimenting with the calculator will fill them out.

Calculator data types

The calculator can deal with integers, real numbers, strings, vectors, and matrices. It cannot yet read real numbers
in scientific notation, but it can read them as fractions in which there must be no spaces. Thus -1/3 is a fraction
but -1 / 3 will be read differently. Vectors are arrays of real numbers in square brackets [and], and matrices
are arrays of vectors, which are interpreted as the rows of the matrix.

Calculator commands

Lab
 co

py

Do n
ot r

em
ove

!
These are grouped by the sort of thing they do.

1. Basic arithmetic

• + replaces the previous two items on the stack by their sum. Can add integers, real numbers, vectors, or matrices.
Thus

7 6 +

calculates 7+6=13.

+ can also be used to build strings. A string is a phrase inside quotes. The sum of a string and any item tacks on
a string representation of the item to the original string. Thus

"x = " 3 +

produces the string "x = 3". Using this feature is good for explaining in output exactly what displayed data means.

• – replaces the previous two items on the stack by their difference. Can subtract integers, real numbers, vectors,
or matrices. Thus

7 6 -

calculates 7-6=1.

• * replaces the previous two items on the stack by their product. Can multiply integers or real numbers. Also
calculates the dot product of two vectors; the scalar product of a vector and a scalar; the product of a matrix and
a vector; and the product of two matrices. Thus

7 6 *

calculates 7*6=42.

• / replaces the previous two items on the stack by their quotient. Can divide integers or real numbers. Thus

14 2 /

calculates 14/2 = 7.

• cross replaces the previous two items by their cross product, if they are both three dimensional vectors.

2. Mathematical functions

• exp replaces the previous item x by ex. Similarly for cos, acos, sin, log (which is the natural log).

Calculator commands 2

• atan2 has two arguments y and x in that order, and returns the angle coordinate of the point (x, y). (This odd and
unfortunate choice of the order in which x and y are written conforms with that of most programming languages.)

• ˆ has two arguments x and y, and returns xy . Here either x > 0 or y must be an integer.

• pi is a constant equal to 3.14159 . . .

• floor replaces a number by the largest integer less than or equal to it. Thus 6.7 gets replaced by 6, while -6.7 gets
replaced by -7.

• sqrt replaces the previous item by its square root, if it is a non-negative number.

3. General

• Integers inside parentheses () are indices into an array. Thus if v is a vector then v(0) is the 0-th element of v.

• def defines the previous item to be the item below it. The previous item must be a variable name such as @x or
@longVariableName. A variable name is what you get by putting @ before the variable itself. Thus x is a variable
and @x is its name. (We have to distinguish between the variable and its name because the results of putting them
in a program are very different. When the calculator comes across the variable, it attempts to make a substitution.
This is similar to the difference between a variable and a pointer to the variable in some programming languages.)
Thus

5 @x0 def

defines the variable x0 to be 5. Subsequent occurrences of x0 (with some exceptions to be explained some other
time) will be replaced by 5.

If v is a vector then 4 @v(i) def defines v(i) to be 5.

• dim replaces a vector by its dimension.

• fix requires a non-negative integer on the stack. It sets the number of decimal figures displayed, and does not
leave anything on the stack. Thus

5 fix

4.0 =

displays 4.00000.

• sci is similar to fix, and produces output in scientific notation.

4. Stack manipulations

• dup makes an extra copy of the item at the top of the stack.

• pop just removes the item at the top of the stack.

• exch swaps the top two items on the stack.

5. Matrix operations

• m i j rowswap swaps rows i and j of the matrix m, leaving m on the stack.

• m i j c rowsub replaces m(i) by m(i) − c ∗ m(j), leaving m on the stack.

• rowscale replaces m(i) by c ∗ m(i), leaving m on the stack.

Calculator commands 3

6. Conditionals

• lt, le, gt, ge, eq are tests on the previous two items, which should be numbers. The names stand for less than,
less than or equals to, etc. The effect is to place either a true or a false on the stack.

• ifelse uses the top three items on the stack, which should be true/false and two procedures. If true, it executes
the first procedure, while if false it executes the second. Either procedure can be empty.

• not, &, | are boolean operators. They combine true/false data. The notation for the last two (’and’ and ’or’) is
close to that of other programming languages. Thus

5 0 gt

7 0 gt

&

returns true.

7. Loops

• repeat can be used to perform loops. It requires an integer and a procedure immediately preceding it. A
procedure is a sequence of instructions inside brackets { and }. Thus

1000

10 { 1 - = } repeat

will output

999

998

997

996

995

994

993

992

991

990

• break will break out of an enclosing loop. This should be used together with conditionals in order to halt a
repeat loop. Thus the following program will print out only the numbers 10, 9, 8, 7, 6.

10 @x def

10 {

x 5 eq { break } { x = x 1 - @x def } ifelse

} repeat

• stop halts the calculator temporarily, allowing you to view the stack, step through, or rerun the program.

• Any error will be signalled by displaying an error message. You should never ignore one of these messages. It
is possible that it is caused by a bug in the program, in which case you should make a bug report.

