Research Summary
Categorified Coulomb branches
- Canonical bases for Coulomb branches of 4d N=2 gauge theories
(arXiv)
with H. Williams.
- Ind-geometric stacks
(arXiv)
with H. Williams.
- Tamely presented morphisms and coherent pullback
(arXiv)
with H. Williams.
- Cluster theory of the coherent Satake category
(arXiv)
with H. Williams, J. Amer. Math. Soc. 32 (2019), 709--778.
|
Categorical Heisenberg actions
- Heisenberg categorification and Hilbert schemes
(arXiv)
with A. Licata, Duke Math Journal 161 (2012), no. 13, 2469--2547.
- Vertex operators and 2-representations of quantum affine algebras
(arXiv)
with A. Licata.
- Braid group actions via categorified Heisenberg complexes
(arXiv)
with A. Licata and J. Sussan, Compositio Math. 150 (2014), 105--142.
- On a categorical Boson-Fermion correspondence
(arXiv)
with J. Sussan, C.M.P. 336 (2015), 649--669.
- W-algebras from Heisenberg categories
(arXiv)
with A. Lauda, A. Licata and J. Sussan, J. Inst. Math. Jussieu (2016), 1--37.
- The Elliptic Hall algebra and the deformed Khovanov Heisenberg category
(arXiv)
with A. Lauda, A. Licata, P. Samuelson and J. Sussan, Selecta Math. 24 (2018), 4041--4103.
|
Equivalences and categorical sl(2) actions
- Coherent sheaves and categorical sl(2) actions
(arXiv)
with J. Kamnitzer and A. Licata, Duke Math Journal 154 (2010) no. 1, 135--179.
- Categorical geometric skew Howe duality
(arXiv)
with J. Kamnitzer and A. Licata, Inventiones Math. 180 (2010) no. 1, 111--159.
- Derived equivalences for cotangent bundles of Grassmannians via categorical sl(2) actions
(arXiv)
with J. Kamnitzer and A. Licata,
J. Reine Angew. Math. 675 (2013), 53--99.
- Equivalences and stratified flops
(arXiv)
Compositio Math. 148 (2012) no. 1, 185--209.
- Flops and about: a guide
(arXiv)
EMS Congress Reports (2011), no. 8, 61--101.
- Associated graded of Hodge modules and categorical sl(2) actions
(arXiv)
with C. Dodd and J. Kamnitzer,
Selecta Math. 27 (2021), no. 2, Paper No. 22, 55 pp.
- Categorical geometric symmetric Howe duality
(arXiv)
with J. Kamnitzer,
Selecta Math. 24 (2018), no. 2, 1593--1631.
|
Quantum groups and higher representation theory
- Braiding via geometric Lie algebra actions
(arXiv)
with J. Kamnitzer, Compositio Math. 148 (2012) no. 2, 464--506.
- Coherent sheaves on quiver varieties and categorification
(arXiv)
with J. Kamnitzer and A. Licata, Math. Annalen 357 (2013) no. 3, 805--854.
- Implicit structure in 2-representations of quantum groups
(arXiv)
with A. Lauda, Selecta Math 21 (2015), 201--244.
- Loop realizations of quantum affine algebras
(arXiv)
with A. Licata, J. Math. Phys. 53 (2012), no. 12, 18pp.
- Webs and quantum skew Howe duality
(arXiv)
with J. Kamnitzer and S. Morrison, Math. Annalen 360 (2014), 351--390.
- Rigidity in higher representation theory
(arXiv)
- Quantum K-theoretic geometric Satake: the SL(n) case
(arXiv)
with J. Kamnitzer, Compositio Math. 154 (2018), no. 2, 275--327.
- Exotic t-structures and actions of quantum affine algebras
(arXiv)
with C. Koppensteiner, J. Eur. Math. Soc. 22 (2020), no. 10, 3263--3304.
- Curved Rickard complexes and link homologies
(arXiv)
with A. Lauda and J. Sussan,
J. Reine Angew. Math. 769 (2020), 87--119.
|
Knot homologies via derived categories of coherent sheaves
- Knot Homology Via Derived Categories of Coherent Sheaves I, sl(2) case
(arXiv)
with J. Kamnitzer, Duke Math Journal 142 (2008) no.3, 511--588.
- Knot Homology Via Derived Categories of Coherent Sheaves II, sl(m) case
(arXiv)
with J. Kamnitzer, Inventiones Math. 174 (2008) no. 1, 165--232.
- Clasp technology to knot homology via the affine Grassmannian
(arXiv)
Math. Annalen 363 (2015), 1053--1115.
- Knot homology via derived categories of coherent sheaves IV, coloured links
(arXiv)
with J. Kamnitzer, Quantum Topology 8 (2017) no. 2, 381--411.
- Remarks on coloured triply graded link invariants
(arXiv)
Algebr. Geom. Topol. 17 (2017), no. 6, 3811-3836.
|
The abelian monodromy extension property
- The Abelian Monodromy Extension property for families of curves
(arXiv)
Math. Annalen 344 (2009) no. 3, 717--747.
- The solvable monodromy extension property and varieties of log general type
(arXiv)
Clay Math. Proc.: A Celebration of Algebraic Geometry Clay Math. Proc. 18, (2013), 119--129.
|
The geometric McKay correspondence in dimension three
- A derived approach to geometric McKay correspondence in dimension three
(arXiv)
with T. Logvinenko, J. Reine Angew. Math. 636 (2009), 193--236.
- Derived Reid's recipe for abelian subgroups of SL(3)
(arXiv)
with A. Craw and T. Logvinenko, J. Reine Angew. Math. 727 (2017), 1--48.
|