
Solving eigenvalue problems on curved surfaces using the Closest

Point Method

Colin B. Macdonalda,1,∗, Jeremy Brandmanb,2, Steven J. Ruuthc,3

aMathematical Institute, University of Oxford, OX1 3LB, UK.
bDepartment of Mathematics, Courant Institute of Mathematical Sciences, New York University.

cDepartment of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A1S6 Canada.

Abstract

Eigenvalue problems are fundamental to mathematics and science. We present a simple
algorithm for determining eigenvalues and eigenfunctions of the Laplace–Beltrami operator
on rather general curved surfaces. Our algorithm, which is based on the Closest Point
Method, relies on an embedding of the surface in a higher-dimensional space, where standard
Cartesian finite difference and interpolation schemes can be easily applied. We show that
there is a one-to-one correspondence between a problem defined in the embedding space and
the original surface problem. For open surfaces, we present a simple way to impose Dirichlet
and Neumann boundary conditions while maintaining second-order accuracy. Convergence
studies and a series of examples demonstrate the effectiveness and generality of our approach.

Keywords: eigenvalues, eigenfunctions, Laplace–Beltrami operator, Closest Point Method,
surface computation, implicit surfaces

1. Introduction

The study of eigenvalues and eigenfunctions of the Laplacian operator has long been a
subject of interest in mathematics, physics, engineering, computer science and other dis-
ciplines. Of considerable importance is the case where the underlying domain is a curved
surface, S, in which case the problem becomes one of finding eigenvalues and eigenfunctions
of the corresponding Laplace–Beltrami operator

−∇S · ∇Su = λu, (1)

∗Principal corresponding author
Email addresses: macdonald@maths.ox.ac.uk (Colin B. Macdonald), brandman@cims.nyu.edu

(Jeremy Brandman), sruuth@sfu.ca (Steven J. Ruuth)
1The work of this author was supported by an NSERC postdoctoral fellowship, NSF grant number CCF-

0321917, and by Award No KUK-C1-013-04 made by King Abdullah University of Science and Technology
(KAUST).

2The work of this author was supported by an NSF Mathematical Sciences Postdoctoral Research Fel-
lowship.

3The work of this author was partially supported by a grant from NSERC Canada.

Preprint submitted to Elsevier June 21, 2011

ar
X

iv
:s

ub
m

it/
02

34
26

7
 [

m
at

h.
N

A
]

 2
1

Ju
n

20
11

or, more generally, the elliptic operator

−∇S · (a(x)∇Su) = λu.

The Laplace–Beltrami eigenvalue problem has played a prominent role in recent years in
data analysis. For example, in [1], eigenvalues of the Laplace–Beltrami operator were used
to extract “fingerprints” which characterize surfaces and solid objects. In [2, 3], Laplace–
Beltrami eigenvalues and eigenfunctions were used for dimensionality reduction and data
representation. Other application areas include smoothing of surfaces [4] and the segmen-
tation and registration of shape [5].

Analytical solutions to the Laplace–Beltrami eigenvalue problem are rarely available, so
it is crucial to be able to numerically approximate them in an accurate and efficient manner.
Partial differential equations on surfaces, including eigenvalue problems, have traditionally
been approximated using either (a) discretizations based on a parameterization of the surface
[6], (b) finite element discretizations on a triangulation of the surface [7], or (c) embedding
techniques which solve some embedding PDE in a small region near the surface [8] (see also
the related works [9, 10, 11, 12, 13, 14, 15]).

Parameterization methods (a) are often effective for simple surfaces [6], but for more
complicated geometries have the deficiency of introducing distortions and singularities into
the method through the parameterization [16]. Approaches based on the finite element
method can be deceptively difficult to implement; as described in [7], “even though this
method seems to be very simple, it is quite tricky to implement”. Embedding methods (c)
have gained a considerable following because they permit PDEs on surfaces to be solving
using standard finite differences.

This paper proposes a simple and effective embedding method for the Laplace–Beltrami
eigenvalue problem based on the Closest Point Method. The Closest Point Method is a recent
embedding method that has been used to compute the numerical solution to a variety of
partial differential equations [17, 18, 19, 20], including in-surface heat flow, reaction-diffusion
equations, and higher-order motions involving biharmonic and “surface diffusion” terms.
Unlike traditional embedding methods, which are built around level set representatives of
the surface, the Closest Point Method is built around a closest point representation of the
surface. This allows for general smooth surfaces with boundaries and does not require
the surface to have an inside/outside [17]. In addition, the method does not introduce
artificial boundary conditions at the edge of the computation band. Such artificial boundary
conditions typically lead to low-order accuracy [12].

Here we apply the Closest Point Method to the problem of determining the eigenvalues
and eigenmodes of the Laplace–Beltrami operator on a surface. We begin by demonstrating
that, for closed surfaces, there is a one-to-one correspondence between the eigenvalues of
the embedding problem and the original surface problem. Later, we consider open surfaces
and present simple techniques for achieving high-order accurate approximations to Dirichlet
and homogeneous Neumann boundary conditions. Our proposed method retains the usual
advantages of the Closest Point Method, namely generality with respect to the surface,
high-order accuracy and simplicity of implementation.

2

The paper unfolds as follows. Section 2 provides key background on the Closest Point
Method. Section 3 proposes an embedding problem used to solve the Laplace–Beltrami
eigenvalue problem and explains why a similar embedding problem leads to spurious eigen-
values. Section 4 provides discretization details. In Section 5, a second-order discretization
of boundary conditions is described for open surfaces. Section 6 validates the method with
a number of convergence studies and examples on complex shapes. Finally, Section 7 gives
a summary and conclusions.

2. The Closest Point Method

We now review the ideas behind the Closest Point Method [17] which are relevant to the
problem of finding Laplace-Beltrami eigenvalues and eigenfunctions.

The representation of the underlying surface is fundamental to any numerical method
for PDEs on surfaces. The Closest Point Method relies on a closest point representation of
the underlying surface.

Definition 1 (Closest point function). Given a surface S, cp(x) refers to a (possibly
non-unique) point belonging to S which is closest to x.

The closest point function, defined in a neighborhood of a surface, gives a representation
of the surface. This closest point representation allows for general surfaces with boundaries
and does not require the surface to have an inside/outside. The surface can be of any
codimension [17], or even of mixed codimension [20].

The goal of the Closest Point Method is to replace a surface PDE by a related PDE
in the embedding space which can be solved using finite difference, finite element or other
standard methods. In the case of the Laplace-Beltrami eigenvalue problem, this approach
relies on the following result, which states that the Laplace–Beltrami operator ∆S may be
replaced by the standard Laplacian ∆ in the embedding space Rd under certain conditions.

Theorem 1. Let S be a smooth closed surface in Rd and u : S → R be a smooth function.
Assume the closest point function cp(x) is defined in a neighborhood Ω ⊂ Rd of S. Then

∆Su(x) = ∆(u(cp(x))) for x ∈ S. (2)

Note that the right-hand side is well-defined because u(cp(·)) can be evaluated at points both
on and off the surface.

This result follows from the principles in [17].
Because the function u(cp(x)), known as the closest point extension of u, is used through-

out this paper, we make the following definition.

Definition 2 (Closest point extension). Let S be a smooth surface in Rd. The closest
point extension of a function u : S → R to a neighborhood Ω of S is the function v : Ω→ R
defined by

v(x) = u(cp(x)). (3)

3

3. The embedded eigenfunction problem

Our objective is to develop a simple, effective method for solving the following surface
eigenvalue problem:

Problem 1 (Laplace–Beltrami eigenvalue problem). Given a surface S, determine the
eigenfunctions u : S → R and eigenvalues λ satisfying

−∆S(u(x)) = λu(x), for x ∈ S. (4)

If the surface S is open, then the problem will also have boundary conditions: we address
this in Section 5.

In this section, we assume that a closest point representation of the surface is available
and consider two associated embedding problems. We will see that the first, a direct exten-
sion of (2), leads to an ill-posed problem. However a straightforward modification of this
problem leads to our second embedding problem, which we show is equivalent to (4).

3.1. A first try

We first consider the following embedded eigenvalue problem, which is directly motivated
by (2).

Problem 2 (Ill-posed embedded eigenvalue problem). Determine the eigenfunctions
v : Ω ⊂ Rd → R and eigenvalues λ satisfying

−∆(v(cp(x))) = λv(x), (5)

in a neighborhood Ω ⊂ Rd of S.

Solutions to Problem 1 and Problem 2 are closely related. Every solution to the embed-
ding problem, restricted to the surface, is a solution to the surface problem. Conversely,
except for the λ = 0 case, every surface eigenfunction corresponds to a unique solution of
Problem 2. These results are established in Appendix A.

Notably, the one-to-one correspondence between solutions breaks down for the λ = 0
case (the null-eigenspace). Not only is this case significant in theory, in practice it makes
Problem 2 ill-posed.

3.1.1. The null-eigenspace

The constant eigenfunction u(x) = c and λ = 0 is a solution to (4). Now consider a
function on Ω which agrees with u on the surface (but differs off the surface)

v : Ω→ R, such that v(x) = c for x ∈ S,

and note that v(x) is a null-eigenfunction of (5). Because v(x) is arbitrary for x ∈ Ω\S, the
set of null-eigenfunctions for (5) is much larger than the set of null-eigenfunctions for (4). In
fact, the set of null-eigenfunctions for (5) is infinite-dimensional: any (linearly independent)

4

change off the surface gives a new linearly independent eigenfunction. For points off of the
surface, these null-eigenfunctions need not even be smooth.

This example demonstrates the essential flaw of Problem 2: when λ = 0, only the surface
values of eigenfunctions are determined by (5) (i.e., eigenfunctions can take on arbitrary
values elsewhere). Not surprisingly, the infinite-dimensionality of the null-eigenspace causes
problems for numerical methods based on approximating (5). For example, a large number
of eigenfunctions with near-zero eigenvalues are observed in the numerical experiment of
Figure 2 in Section 4.3 below.

3.2. The fix: a modified embedded eigenvalue problem
To avoid the null-eigenspace found in Problem 2, we consider a modified embedded

eigenvalue problem. Our approach uses the split operator introduced in [20]:

Definition 3 (Operator ∆#
ε). Given Ω ⊂ Rd containing a surface S and a function v :

Ω→ R, the operator ∆#
ε is defined as

∆#
ε v(x) := ∆(v(cp(x)))− 2d

ε2

[
v(x)− v(cp(x))

]
. (6)

where 0 < ε� 1.

The factor 2d (twice the dimension of the embedding space Ω) is for later notational conve-
nience. We can view ∆#

ε v as ∆(v(cp)) plus a penalty for large change in the normal direction:
specifically ∆#

ε v will be large if |v(x)− v(cp(x))| is not O(ε2). Using this operator, we pose
another embedded eigenvalue problem:

Problem 3 (Regularized embedded eigenvalue problem). Determine all eigenfunc-
tions v : Ω ⊂ Rd → R and eigenvalues λ satisfying

−∆#
ε v(x) = λv(x), (7)

in an embedding space Ω ⊂ Rd containing the surface S.

For eigenvalues λ < 2d
ε2

, we can show a one-to-one correspondence between Problem 1
and Problem 3.

Theorem 2 (Equivalence of two eigenvalue problems). Suppose S is a smooth sur-
face embedded in Rd and that Ω ⊂ Rd is a neighborhood of the surface. Then, for every
eigenfunction u : C2(S)→ R of (4) with eigenvalue λ < 2d

ε2
, there exists a unique eigenfunc-

tion v : Ω → R of (7) with eigenvalue λ which agrees with u on S. The eigenfunction v is
given by

v(x) =
∆(u(cp(x))) + 2d

ε2
u(cp(x))

−λ+ 2d
ε2

. (8)

Conversely, for every eigenfunction v(x) of (7) with eigenvalue λ, the restriction of v(x) to
S is an eigenfunction of (4) with eigenvalue λ.

Proof. Existence and uniqueness of v follow directly from the condition that v agrees with
u on S and the definition of ∆#

ε v. The converse follows by choosing x ∈ S in (7) and
applying Theorem 1.

5

Remark 1. Note that when λ = 0 in (7), v is determined in Ω by its values on the surface,
avoiding the null-eigenspace problem of (5).

Remark 2. If one tries to compute the eigenvalues λ ≥ 2d
ε2

of Problem 3, one encounters
ill-posedness similar to the ill-posed embedded eigenvalue problem (5). This is confirmed
by the numerical results in Section 6.1.3. The shift of the null-space by 2d

ε2
is due to the

additional term 2d
ε2

(
v(x) − v(cp(x))

)
in Problem 3. As we shall see in the next section

and Section 6.1.3, this ill-posedness will not be an issue for practical purposes since the
parameter ε can be chosen proportional to the grid spacing.

Example 1. Let S be a circle of radius R embedded in 2D and consider the eigenfunction
u = cos(

√
λRθ) with eigenvalue λ. Applying Theorem 2, we get

v(x) =

(
λε2 (1−R2/r2)

−λε2 + 4
+ 1

)
cos(
√
λRθ),

and we note that indeed v(x) = u(x) on the surface.

3.2.1. Discretizing the regularized operator: choice of ε

In this work, we choose ε = ∆x, where ∆x is the underlying grid spacing. In two
dimensions, with this choice of ε and a centered five-point discretization of the Laplacian
operator, we begin discretizing the regularized operator (6) to obtain

∆#
ε u(x, y) ≈ 1

∆x2

[
− 4u(x, y) + u(cp(x+ ∆x, y)) + u(cp((x−∆x, y)) +

u(cp(x, y + ∆x)) + u(cp(x, y −∆x))
]
, (9)

and analogously in higher dimensions. Note that by choosing ε = ∆x, the resulting di-
agonal term (i.e., the “center” of the finite difference stencil) is without a closest point
extension: where diagonal terms appear in the discretization, consistency does not require
an interpolation to the closest point on the surface. See [20] for details.

While (9) is an approximation to the regularized operator (6), it is not completely discrete
since, for example, cp(x+∆x, y) is generally not a grid point. In Section 4.3 we will complete
this discretization and solve the resulting eigenvalue problem.

4. Numerical Discretization

In this section, we discretize ∆#
ε u following the approach given in [20]. The eigenvalues

of the resulting matrix, computed using standard techniques, approximate the eigenvalues
of (4).

Following [20], our computational domain is a narrow band of m grid points L =
{x1,x2, . . . ,xm} enveloping the surface S. We approximate a function u at all points in L
as the vector u ∈ Rm where ui ≈ u(xi) for each xi ∈ L.

6

x

cp(x)

Figure 1: A discrete closest point exten-
sion being applied to extend u(cp(x)) us-
ing degree p = 3 (bicubic) interpolation.
The shaded region indicates the interpo-
lation stencil for cp(x).

4.1. Discrete closest point extensions

To choose the list of points L, we consider the problem of evaluating u(cp(xj)) for a
particular point xj. As shown in Figure 1, cp(xj) is not typically a grid point, so we
approximate the value of u(cp(xj)) using interpolation of the values of u at neighboring grid
points. This interpolation has a certain stencil associated with it [20] and we choose L such
that it contains the union of all the required interpolation stencils (an algorithm for doing
this is given in [20]).

In this work, we use Barycentric Lagrange polynomial interpolation [21] which is linear
in the values of u. This allows us to express the closest point extension to any chosen set
of points as a multiplication by an extension matrix E, where each row of E represents one
discrete closest point extension.

4.2. Discretizing the Laplace operator

Combining the interpolation step, given by the matrix E, with a standard, symmetric
finite difference discretization of ∆ (e.g., the standard five-point stencil in 2D or the standard
nine-point stencil in 3D), yields a discretization of ∆ (u(cp(L))):

∆ (u(cp(L))) ≈∆hEu =

∆h

E

u

= = M̃u,

where M̃ = ∆hE is an m×m matrix intended to approximate the Laplace–Beltrami operator.
However, the matrix M̃ is based on discretizing ∆(u(cp(·))) and we know the latter

cannot capture the eigenmodes of ∆S correctly because of the issue of the null-eigenspace
discussed in Section 3.1.1. Thus, it is not surprising to find that the discrete operator M̃ also
does a poor job of approximating the Laplace–Beltrami operator. For example, Figure 2
shows that M̃ has many eigenvalues close to zero, including some with imaginary parts and
negative real parts. Notably, the matrix M̃ is also ill-suited for time-dependent calculations;
for example, [20, 19] show that implicit methods built on the matrix M̃ have very strict
stability time-stepping restrictions and are not competitive with explicit schemes.

4.3. A modified discretization

We will approximate the operator ∆#
ε using a matrix M as described next. This approach

will yield a convergent algorithm for the eigenfunctions and eigenvalues of the Laplace–
Beltrami operator ∆S .

7

−10 0 10 20 30 40 50

real(λ)

−20

−10

0

10

20
im

a
g
(λ

)

−10 0 10 20 30 40 50

real(λ)

−20

−10

0

10

20

im
a
g
(λ

)

−10 0 10 20 30 40 50

real(λ)

1

10

100

fr
eq

u
en

cy

−10 0 10 20 30 40 50

real(λ)

1

10

100

fr
eq

u
en

cy
Figure 2: Eigenvalues and histograms of their distribution for the matrices M̃ (left) and
M (right). The geometry is a unit semi-circle in 2D with homogeneous Dirichlet boundary
conditions, E with bicubic interpolation (p = 3), and a mesh spacing of ∆x = 1

32
. Note the

large number of eigenvalues near zero for M̃, whereas M correctly captures the spectrum of
1, 4, 9, 16, 25,

Approximating ∆#
ε is straightforward and follows from the definition (6). When approx-

imating ∆S at the point xi with a finite difference scheme, we map only the neighboring
points xj of the stencil back to their closest points cp(xj) and use ui itself instead of u(cp(xi))
[20]. This special treatment of the diagonal elements (which corresponds to ε = ∆x) yields
a new m×m matrix [20]

M := diag(∆h) + (∆h − diag(∆h))E =

M

=

diag∆h

+

∆h − diag∆h

E

.

Figure 2 gives the results of an experiment which contrasts the behavior of M and M̃. We
find that the spectrum of M matches that of ∆S on a semi-circular domain in R2, whereas
the spectrum of M̃ does not.

Remark. The computational band L must be chosen so that it contains the interpolation
stencil for cp(x) for all x needed in the calculation. Figure 3 shows the computational
grid for an egg-shaped curve S illustrating the list of grid points L. An algorithm for the
construction of the list L is given in [20].

4.4. Computing eigenvalues and eigenmodes

Given the discrete operator M which approximates the Laplace–Beltrami operator on a
surface S, we compute a spectral decomposition

M = QΛQ−1, (10)

8

−1 0 1

x

−1

0

1

y

−1 0 1

x

−1

0

1

y
Figure 3: Computational grids for the Closest Point Method for an egg-shaped surface S
with ∆x = 0.125 (left) and ∆x = 0.0625 (right). Second-order finite differences and degree
p = 3 interpolation.

where diag(Λ) are the eigenvalues of M and the columns of Q are the eigenvectors. These
eigenvalues and eigenvectors are the respective approximations of the eigenvalues and eigen-
functions of the Laplace–Beltrami operator on S.

4.4.1. Implementation

The final step of our algorithm—computing the spectral decomposition of a matrix M—is
a well-known problem in numerical linear algebra (e.g., [22, 23]). For example, in Matlab
we can use the function eig() to compute the complete decomposition or the function eigs() to
compute only part of the spectrum. Matlab’s eig() calls LAPACK routines [24] and eigs()
calls ARPACK [25] which makes use of the sparsity of the matrix M (in fact, it only requires
a function which returns a matrix-vector product, although in this work we explicitly form
the matrix M). Many of our calculations are performed in Python using SciPy [26] and
NumPy [27] where we also make use of ARPACK via scipy.sparse.linalg.eigen.arpack.

The eigenfunctions are returned as vectors over the list of points L. In practice, the inter-
polation scheme from the closest point extension can be reused to evaluate the eigenfunctions
at any desired points on the surface for plotting or other purposes.

4.4.2. Degree of interpolation

For the Closest Point Method to achieve the full order of accuracy of the underlying
finite difference scheme (say q), the degree of interpolation p must be chosen large enough so
that the interpolant itself can be differentiated sufficiently accurately. For the second-order
Laplace–Beltrami problems in this work, we need p ≥ q + 1 [17, 20].

9

Figure 4: The function c̄p. For the
point x, the closest point cp(x) lies
in the interior of the surface and for
such a point, c̄p(x) = cp(x). However,
for xg, the closest point cp(xg) lies on
the boundary of the surface and c̄p(xg)
lies in the interior, with c̄p(xg) and xg
roughly equidistant from cp(xg).

S

bc x

bc

2cp(x)− x

bc
c̄p(x) = cp(x)

xg

bc

2cp(xg)− xg

bc

cp(xg)

bc

bc
c̄p(xg)

5. Boundary conditions

When applied to an open surface, the Closest Point Method propagates boundary values
into the embedding space along directions normal to the boundary, yielding homogeneous
Neumann boundary conditions [17]. An analogous method for Dirichlet boundary conditions
is similarly straightforward: instead of propagating out the interpolated values at boundary
points the prescribed boundary conditions are propagated out [17]. While these methods
are simple, they are only first-order accurate, which is lower-order than the discretizations of
the Laplace–Beltrami operator discussed in this paper. Fortunately, a simple modification of
the closest point function can be introduced to obtain a second-order accurate discretization
for boundary conditions of Neumann or Dirichlet type.

Assume a smooth surface, and consider the following modification of the closest point
function,

c̄p(x) := cp
(
x + 2(cp(x)− x)

)
= cp

(
2cp(x)− x

)
. (11)

As is illustrated in Figure 4, whenever cp(x) is a point in the interior of the surface, the
line between 2cp(x)− x and cp(x) is orthogonal to the surface. This implies that c̄p(x) =
cp(2cp(x)− x) = cp(x), at least in a neighborhood of the surface. Conversely, if c̄p(xg) 6=
cp(xg) for a point xg then c̄p(xg) is an interior point of the surface4 and cp(xg) is a boundary
point. For a straight line or a planar surface, u(c̄p(xg)) gives the mirror value for xg, while
for a general, curved surface it gives an approximate mirror value. In correspondence to the
terminology for codimension-zero regions with boundaries, we call a point xg a ghost point
if cp(xg) 6= c̄p(xg) (and note this terminology differs slightly from [20]).

Thus, replacing cp(x) by c̄p(x) in the Closest Point Method does not change the treat-
ment of interior points. At ghost points, however, (approximate) mirror values are used.
This yields a second-order approximation of homogeneous Neumann conditions; no other
modification of the method is required. Homogeneous Dirichlet boundary conditions are
obtained by extending the function at ghost points by −u(c̄p(xg)). By analogy to second-
order boundary conditions for codimension-zero regions, we observe that an approxima-
tion of non-homogeneous Dirichlet conditions is obtained by extending at ghost points by
u(xg) = 2u(cp(xg))− u(c̄p(xg)), where u(cp(xg)) is a prescribed value on the boundary.

4At least for xg in a neighborhood of a sufficiently well-behaved surface: for example, for xg far from
one boundary of a curve segment, cp(2cp(xg)−xg) might be another boundary point instead of an interior
point.

10

100 101 102 103

1/∆x

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

er
ro

r

λ1
λ2
λ3
λ4

λ5
λ6
λ7
λ8

(a) 2nd-order FD, p = 3 interp.

100 101 102 103

1/∆x

10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101

er
ro

r

λ1
λ2
λ3
λ4

λ5
λ6
λ7
λ8

(b) 4th-order FD, p = 5 interp.

Figure 5: Numerical convergence studies for eight of the Laplace–Beltrami eigenvalues (λn =
n2) of a closed egg-shaped curve in 2D. The dashed reference lines have slope two (left) and
four (right). Note second-order accuracy using second-order finite differences with degree
p = 3 interpolation (left) and fourth-order accuracy using fourth-order finite differences with
degree p = 5 interpolation (right). The lack of smoothness in the fourth-order results plot
may be because the underlying spline curve itself is only C2 smooth; results on a circle (not
included) are smoother.

We emphasize that the previous discussion relates to boundaries of the surface and the
treatment of boundary conditions imposed thereat, not to the boundary of the narrow band
of points (e.g., in Figure 3) where no artificial boundary condition need be applied [17, 20].

6. Numerical Results

We present a series of numerical examples to demonstrate the effectiveness of our ap-
proach.

6.1. Numerical convergence studies

We consider the egg-shaped curve in Figure 3 with arclength 2π as a test case. The
Laplace–Beltrami eigenfunctions and eigenvalues in this case are the same as those of u′′ =
λu, where u is 2π periodic, namely u = cos (ns+ β) and λ = n2 for n ∈ Z ≥ 0 where s
represents arclength and β is a phase shift. The closest point function for this curve was
determined using a numerical optimization procedure based on Newton’s method.

Figure 5 shows convergence studies in ∆x for the first few eigenvalues on the egg-shaped
domain. For second-order finite differences and degree-three interpolation we observe second-
order convergence. That is, the Closest Point Method approximates the eigenvalues with
error O(∆x2). Note that the error increases (and this is true even if one measures relative
error) for the larger eigenvalues, but still shows second-order convergence. Figure 5 also
shows that using fourth-order finite differences and degree-five interpolation, we get fourth-
order accurate approximation to the eigenvalues.

11

0 1 2 3 4
x

−1

0

1

y

(a) 2nd-order FD, p = 3 interp.

0 1 2 3 4
x

−1

0

1

y

(b) 4th-order FD, p = 5 interp.

Figure 6: A curve and the corresponding computational grids for the Closest Point Method
with second-order (left) and fourth-order (right) finite difference schemes with ∆x = 0.125.
Grid points marked with small crosses are the ghost points involved in implementing bound-
ary conditions.

In further numerical tests (not included), we found that degree p = 2 interpolation
with second-order finite differences, and degree p = 4 interpolation with fourth-order finite
differences, give approximately second- and fourth-order convergence, respectively. These
are better than expected by one order of accuracy, as originally observed in [20].

6.1.1. Boundary Conditions

In this section we verify using convergence studies that our treatment of boundary con-
ditions introduced in Section 5 achieves the expected order of accuracy. For our tests, we
use the curve shown in Figure 6 parameterized as (x(t), y(t)) = (t, cos t) for t ∈ [1/4, 4].
We apply homogeneous Neumann and Dirichlet boundary conditions to the ends. Again,
the exact eigenvalues and eigenfunctions can be determined analytically by considering the
corresponding problem on an interval. For the former, the arclength of the curve is required
and can be determined in terms of elliptic integrals.

The original Closest Point Method, which does not explicitly treat boundaries, gives
a first-order approximation to homogeneous boundary conditions [17]. See, for example,
Figure 7 where it is observed that this trivial treatment of the boundaries limits the overall
accuracy in the eigenvalues to first-order. Figure 7 also gives results using the new “c̄p”
approach for Neumann boundary conditions described in Section 5; we find that this method
attains the second-order accuracy of the underlying Cartesian finite difference scheme. Note
that the c̄p approach is also effective for Dirichlet boundary conditions. For example, in
Figure 8 we find second-order results for homogeneous Dirichlet boundary conditions using
−u(c̄p(xg) for ghost points (as in Section 5).

The c̄p approach is designed to give second-order approximations to boundary conditions.
Thus it is expected, and observed in Figure 8, that even with higher-order finite difference
schemes and high-degree interpolation, the results will generally be second-order accurate in

12

100 101 102 103

1/∆x

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

er
ro

r

λ1
λ2
λ3
λ4

λ5
λ6
λ7
λ8

100 101 102 103

1/∆x

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

er
ro

r

λ1
λ2
λ3
λ4

λ5
λ6
λ7
λ8

Figure 7: Numerical convergence studies for the first eight non-zero Laplace–Beltrami eigen-
values of a curve in 2D with Neumann boundary conditions applied at both ends. The left
figure uses the original closest point function to impose a homogeneous Neumann boundary
condition, and we note the results are only first-order accuracy (dashed reference line has
slope one). The right figure uses the modified “c̄p” approach and exhibits second-order
accuracy (dashed reference line has slope two). Both computations use second-order finite
differences and degree p = 3 interpolation.

∆x size of M κ(M)
0.25 76 × 76 289
0.125 140 × 140 1154
0.0625 268 × 268 4608
0.03125 524 × 524 19304
0.015625 1036 × 1036 75543
0.0078125 2060 × 2060 326633

Table 1: Condition numbers (2-
norm) for the matrix M. Tested
for the Laplace–Beltrami operator
on a open curve embedded in 2D
with Dirichlet boundary conditions at
both ends, using second-order finite
differences, degree p = 3 interpola-
tion, and the “c̄p” treatment of the
boundary conditions.

the presence of boundary conditions. Third- and higher-order approximation of boundary
conditions may also be contemplated; while we do not investigate such methods here we
note that approximations of this type will require a replacement for c̄p that incorporates
the curvature of the surface near the boundary.

6.1.2. Conditioning

Table 1 shows that the condition number of the matrices used in our computations scales
like O(1

∆x2
). Thus the conditioning is the same as for standard Cartesian finite difference

schemes. The “c̄p” treatment of boundary conditions does not have a significant effect on
conditioning.

6.1.3. Behavior for high-frequency modes

The large number of spurious eigenvalues near 2d
∆x2

in Figure 9 reflect the singular be-
havior of Equation (8) at λ = 2d

∆x2
(c.f., Figure 2 where the problem instead occurs near the

13

100 101 102 103

1/∆x

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

er
ro

r

λ1
λ2
λ3
λ4

λ5
λ6
λ7
λ8

100 101 102 103

1/∆x

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

er
ro

r

λ1
λ2
λ3
λ4

λ5
λ6
λ7
λ8

Figure 8: Numerical convergence study for the first few eigenvalues on a curve with Dirichlet
boundary conditions applied at both ends. The boundaries are dealt with using the “c̄p”
and −u discretization with degree p interpolation. The left figure uses second-order finite
differences (and degree p = 3 interpolation) and achieves second-order accuracy (the dashed
reference lines have slope two). The right figure uses fourth-order finite differences (and
degree p = 5 interpolation) but the overall accuracy is limited by the second-order treatment
of the boundary conditions.

origin). Notably, it is these spurious eigenvalues which possess nonzero imaginary compo-
nents, reflecting the fact that the eigenvalue problem (7) is not self-adjoint. Because these
spurious eigenvalues correspond to highly oscillatory eigenfunctions which are quite close to
the Nyquist frequency (i.e., with eigenvalues near π2

∆x2
), it is not surprising that numerical

difficulties arise for such modes. Nonetheless, any particular higher-frequency modes may
be resolved by appropriately refining ∆x.

6.2. Eigenfunction computations

The following computations were performed in Matlab and SciPy [26]. Visualizations
were carried out with Matlab, VTK [28] and MayaVi [29].

6.2.1. Hemispherical harmonics

Figure 10 shows several Laplace–Beltrami eigenmodes of a unit hemisphere with homo-
geneous Neumann boundary conditions on the equator.

6.2.2. Eigenkaninchen

Figure 11 shows Laplace–Beltrami eigenmodes of the surface of the Stanford Bunny [30].
The closest point function for this and other triangulated surfaces can be computed in an
efficient, straightforward manner [18].

6.2.3. Möbius strip

Figure 12 shows some Laplace–Beltrami eigenmodes of a Möbius strip. Dirichlet bound-
ary conditions are applied at the boundary of the Möbius strip. The surface is embedded in
R3 and the closest point function for each grid point is computed from a parameterization
using a numerical optimization procedure minimizing the square of the distance function.

14

0 128 256 384

real(λ)

−1

0

1

im
a
g
(λ

)

0 512 1024 1536

real(λ)

−3

−2

−1

0

1

2

3

im
a
g
(λ

)

0 2048 4096 6144

real(λ)

−15

−10

−5

0

5

10

15

im
a
g
(λ

)

Figure 9: Computed spectra of the Laplace–Beltrami operator on a unit circle using ∆x =
1
8
, 1

16
, and 1

32
(from left-to-right). The method uses second-order finite differences and degree

p = 3 interpolation. Note a large number of extraneous complex eigenvalues near 4
∆x2

(i.e.,
256, 1024, and 4096): these correspond to the singularity in (8) and can be controlled by
further resolving ∆x.

100 101 102

1/∆x

10−5

10−4

10−3

10−2

10−1

100

101

er
ro

r

λ1
λ2
λ3

λ4
λ5
λ6

Figure 10: The left image shows several hemispherical harmonics with eigenvalue 20 com-
puted with second-order finite differences, degree p = 3 interpolation, and ∆x = 1

64
. The

right image is a convergence study for the first six eigenvalues (λn = n(n + 1)), also using
second-order finite differences and degree p = 3 interpolation (the dashed reference line has
slope two).

15

Figure 11: A selection of eigenkaninchen: Laplace–Beltrami eigenmodes on the surface of
the Stanford Bunny [30]. The results are computed via the Closest Point Method using
second-order finite differences, degree p = 3 interpolation, and ∆x = 0.1, where the bunny
is roughly two units long.

Figure 12: A selection of Laplace–Beltrami
eigenmodes of a Möbius strip computed with
the Closest Point Method. Calculations use
second-order finite differences, p = 3, ∆x =
0.1, and the Möbius strip is about 2 units in
“diameter”.

Note that the non-orientable nature of the Möbius strip poses no difficultly for the Closest
Point Method.

6.2.4. L-shaped Domain

The Closest Point Method works on surfaces of various codimension [17, 20] and indeed
solid shapes in R2 or R3 are surfaces of codimension-zero. Figure 13 shows an eigenmode
computation on an L-shaped domain, where zero Dirichlet boundary conditions are imposed
using the “c̄p” technique described in Section 5. In the interior of a solid, cp(x) = x and so
no interpolations are needed. Furthermore, for a grid-aligned L-shaped domain, for any xi
outside the domain, c̄p(xi) turns out to be another grid point xj (located inside the domain
as if the perimeter were a mirror) so no interpolation step is necessary. Thus in this special
“corner case”, the Closest Point Method reduces to a standard finite difference computation
using ghost points to mirror the values along the perimeter. Interestingly, these reductions

16

Figure 13: The first 15 Laplacian eigen-
modes of an L-shaped domain with
Dirichlet boundary conditions. The re-
sults are computed using the Closest
Point Method with second-order finite
differences using ∆x = 1/40 (the domain
is two units wide).

Figure 14: First ten eigenmodes of continental Africa. The Earth has unit diameter and
the computation uses second-order finite differences with ∆x = 1/40 and degree p = 3
interpolation.

happen automatically: no change in the code is needed.

6.2.5. Continental Africa

Some Laplace–Beltrami eigenmodes of continental Africa are shown in Figure 14. The
results are computed directly on the surface of the Earth (assumed to be a sphere). Homo-
geneous Dirichlet boundary conditions are applied to the coastline. Finding the closest point
function involves projecting onto a bitmapped image of the Earth [31] where the continent
was first manually segmented. It is interesting to note that these eigenmodes match very
closely the first ten eigenmodes of the L-shaped domain in Figure 13.

7. Summary and Conclusions

Through a series of convergence studies and computational examples, we have shown
that the Closest Point Method is an effective method for computing the spectra and eigen-
functions of the Laplace–Beltrami operator on rather general surfaces. The basis of our
approach is the embedded eigenvalue problem (7) which, when discretized using standard,

17

centered finite difference methods and Lagrange interpolation, yields a nonsymmetric ma-
trix eigenvalue problem which can be solved using standard software. Fortunately, this lack
of symmetry is not a concern in many practical situations since only the highest frequency
modes have a significant imaginary component. We are currently investigating a finite ele-
ment Closest Point Method which would lead to symmetric matrices.

For eigenvalue problems on open surfaces with Dirichlet or homogeneous Neumann
boundary conditions, we have introduced second-order accurate schemes. These methods
require only a simple change to the closest point extension and are straightforward to im-
plement.

Although we have focused on the Laplace–Beltrami operator in this work, the Closest
Point Method is applicable to many other surface differential operators [17, 18, 19, 20]. This
suggests that the approach presented here may be applicable to a larger class of eigenvalue
problems.

Finally, the techniques developed here are quite general and are applicable beyond surface
eigenvalue problems. For example, future work will include solving surface Poisson problems
of the form −∆Su = f .

Acknowledgments

The authors thank Bin Dong (UCSD), who motivated this work by asking if the Closest
Point Method could be used for surface eigenvalue calculations.

Appendix A. Additional theorems

As mentioned in Section 3.1, every solution to the ill-posed embedding problem (5),
restricted to the surface, is a solution to the surface eigenvalue problem. Conversely, except
for the λ = 0 case, every surface eigenfunction corresponds to a unique solution of the
embedding problem. These results are established by the following theorems.

Theorem 3. Suppose v(x) and λ are a solution to the embedding eigenvalue problem (5)
and S is a smooth surface. Then u : S → R defined by u(x) = v(x) for x ∈ S is an
eigenfunction of (4) with eigenvalue λ.

Proof. This is a direct consequence of Theorem 1.

Theorem 4. Let S be a smooth surface. For every non-constant solution u and λ of (4),
there exists a unique (up to a multiplicative constant) eigenfunction v of (5) with eigenvalue
λ which agrees with u on S. This eigenfunction is given by v(x) = − 1

λ
∆(u(cp(x))).

Proof. Using our hypothesis that v agrees with u on S, we may solve for v in (5) to obtain
the result.

18

References

[1] M. Reuter, F.-E. Wolter, N. Peinecke, Laplace-spectra as fingerprints for shape matching, in: Pro-
ceedings of the 2005 ACM symposium on Solid and physical modeling, SPM ’05, 2005, pp. 101–106.
doi:10.1145/1060244.1060256.

[2] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural
Computation 15 (6) (2003) 1373–1396. doi:10.1162/089976603321780317.

[3] R. R. Coifman, S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis 21 (1) (2006)
5–30. doi:10.1016/j.acha.2006.04.006.

[4] S. Seo, M. Chung, H. Vorperian, Heat kernel smoothing using Laplace–Beltrami eigenfunctions, in:
T. Jiang, N. Navab, J. Pluim, M. Viergever (Eds.), Medical Image Computing and Computer-Assisted
Intervention - MICCAI 2010, Vol. 6363 of Lecture Notes in Computer Science, Springer Berlin / Hei-
delberg, 2010, pp. 505–512. doi:10.1007/978-3-642-15711-0_63.

[5] M. Reuter, S. Biasotti, D. Giorgi, G. Patanè, M. Spagnuolo, Discrete Laplace–Beltrami operators for
shape analysis and segmentation, Computers & Graphics 33 (3) (2009) 381–390, iEEE International
Conference on Shape Modelling and Applications 2009. doi:10.1016/j.cag.2009.03.005.

[6] R. Glowinski, D. C. Sorensen, Computing the eigenvalues of the Laplace–Beltrami operator on the
surface of a torus: A numerical approach, in: E. Oñate, R. Glowinski, P. Neittaanmäki (Eds.), Partial
Differential Equations, Vol. 16 of Computational Methods in Applied Sciences, Springer Netherlands,
2008, pp. 225–232. doi:10.1007/978-1-4020-8758-5_12.

[7] M. Reuter, F.-E. Wolter, N. Peinecke, Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids,
Computer-Aided Design 38 (4) (2006) 342–366. doi:10.1016/j.cad.2005.10.011.

[8] J. Brandman, A level-set method for computing the eigenvalues of elliptic operators defined on compact
hypersurfaces, J. Sci. Comput. 37 (2008) 282–315. doi:10.1007/s10915-008-9210-z.

[9] M. Bertalmı́o, L.-T. Cheng, S. Osher, G. Sapiro, Variational problems and partial differential equations
on implicit surfaces, J. Comput. Phys. 174 (2) (2001) 759–780.

[10] J. Xu, H. Zhao, An Eulerian formulation for solving partial differential equations along a moving
interface, J. Sci. Comput. 19 (1) (2003) 573–594. doi:10.1023/A:1025336916176.

[11] J. B. Greer, A. L. Bertozzi, G. Sapiro, Fourth order partial differential equations on general geometries,
J. Comput. Phys. 216 (1) (2006) 216–246.

[12] J. B. Greer, An improvement of a recent Eulerian method for solving PDEs on general geometries, J.
Sci. Comput. 29 (3) (2006) 321–352.

[13] O. Nemitz, M. B. Nielsen, M. Rumpf, R. Whitaker, Finite element methods on very large, dynamic
tubular grid encoded implicit surfaces, SIAM J. Sci. Comput.

[14] G. Dziuk, C. M. Elliott, Eulerian finite element method for parabolic PDEs on implicit surfaces, Interf.
Free Bound. 10 (2008) 119–138.

[15] S. Leung, J. Lowengrub, H. Zhao, A grid based particle method for solving partial differential equations
on evolving surfaces and modeling high order geometrical motion, J. Comput. Phys. 230 (7) (2011)
2540–2561. doi:10.1016/j.jcp.2010.12.029.

[16] M. Floater, K. Hormann, Surface parameterization: a tutorial and survey, in: Advances in Multireso-
lution for Geometric Modelling, Springer, 2005, pp. 157–186.

[17] S. J. Ruuth, B. Merriman, A simple embedding method for solving partial differential equations on
surfaces, J. Comput. Phys. 227 (3) (2008) 1943–1961. doi:10.1016/j.jcp.2007.10.009.

[18] C. B. Macdonald, S. J. Ruuth, Level set equations on surfaces via the Closest Point Method, J. Sci.
Comput. 35 (2–3) (2008) 219–240. doi:10.1007/s10915-008-9196-6.

[19] C. B. Macdonald, The Closest Point Method for time-dependent processes on surfaces, Ph.D. thesis,
Simon Fraser University (August 2008).

[20] C. B. Macdonald, S. J. Ruuth, The implicit Closest Point Method for the numerical solution of partial
differential equations on surfaces, SIAM J. Sci. Comput. 31 (6) (2009) 4330–4350. doi:10.1137/

080740003.
[21] J.-P. Berrut, L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46 (3) (2004) 501–517.
[22] G. H. Golub, C. F. van Loan, Matrix Computations, Johns Hopkins University Press, 1996.

19

http://dx.doi.org/10.1145/1060244.1060256
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1016/j.acha.2006.04.006
http://dx.doi.org/10.1007/978-3-642-15711-0_63
http://dx.doi.org/10.1016/j.cag.2009.03.005
http://dx.doi.org/10.1007/978-1-4020-8758-5_12
http://dx.doi.org/10.1016/j.cad.2005.10.011
http://dx.doi.org/10.1007/s10915-008-9210-z
http://dx.doi.org/10.1023/A:1025336916176
http://dx.doi.org/10.1016/j.jcp.2010.12.029
http://dx.doi.org/10.1016/j.jcp.2007.10.009
http://dx.doi.org/10.1007/s10915-008-9196-6
http://dx.doi.org/10.1137/080740003
http://dx.doi.org/10.1137/080740003

[23] L. N. Trefethen, D. Bau, Numerical Linear Algebra, SIAM, 1997.
[24] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd Edition, SIAM, 1999.
[25] R. Lehoucq, D. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Prob-

lems with Implicitly Restarted Arnoldi Methods, SIAM, 1998.
[26] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python, http:

//www.scipy.org, accessed 2008-07-15 (2001).
[27] T. E. Oliphant, Python for scientific computing, Computing in Science & Engineering 9 (3) (2007)

10–20.
[28] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit: an object-oriented approach to 3D

graphics, Prentice Hall, 1998.
[29] P. Ramachandran, G. Varoquaux, Mayavi: Making 3D data visualization reusable, in: G. Varoquaux,

T. Vaught, J. Millman (Eds.), Proceedings of the 7th Python in Science Conference, 2008, pp. 51–56,
http://code.enthought.com/projects/mayavi/.

[30] G. Turk, M. Levoy, The Stanford Bunny, the Stanford 3D scanning repository, http://www-graphics.
stanford.edu/data/3Dscanrep, accessed 2008-06-18 (1994).

[31] NASA, Visible Earth website, http://visibleearth.nasa.gov, accessed 2010-12-05 (2010).

20

http://www.scipy.org
http://www.scipy.org
http://code.enthought.com/projects/mayavi/
http://www-graphics.stanford.edu/data/3Dscanrep
http://www-graphics.stanford.edu/data/3Dscanrep
http://visibleearth.nasa.gov

	1 Introduction
	2 The Closest Point Method
	3 The embedded eigenfunction problem
	3.1 A first try
	3.1.1 The null-eigenspace

	3.2 The fix: a modified embedded eigenvalue problem
	3.2.1 Discretizing the regularized operator: choice of

	4 Numerical Discretization
	4.1 Discrete closest point extensions
	4.2 Discretizing the Laplace operator
	4.3 A modified discretization
	4.4 Computing eigenvalues and eigenmodes
	4.4.1 Implementation
	4.4.2 Degree of interpolation

	5 Boundary conditions
	6 Numerical Results
	6.1 Numerical convergence studies
	6.1.1 Boundary Conditions
	6.1.2 Conditioning
	6.1.3 Behavior for high-frequency modes

	6.2 Eigenfunction computations
	6.2.1 Hemispherical harmonics
	6.2.2 Eigenkaninchen
	6.2.3 Möbius strip
	6.2.4 L-shaped Domain
	6.2.5 Continental Africa

	7 Summary and Conclusions
	Appendix A Additional theorems

