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Abstract. The PIMS Mathematical Modeling spring workshop pre-
sented six different environments to be considered for modeling during the
program. For this group, Chris Budd proposed that we study data obtained
through experiments using a device designed to determine the freshness of
fish. Through an electric current applied to a coil, a needle-shaped probe is
projected by a force directly on the surface of a test sample. The depth to
which the probe pushes the surface is recorded by the coil as a function of
time. The goal of this project is to use the data to indicate what mecha-
nisms govern the dynamics of the probe over time, namely models of ordinary
differential equations from which parameters can be extracted to determine
fresh fish from those which are not.
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1 Introduction

Have you ever been to the supermarket to buy fresh fish and wonder: Just
how fresh is this fish? Is the specified freshness of the fish accurate? If not,
how could you tell?

In this report we describe the mathematical analysis of a system which is
proposed to measure the freshness of fish. The device used to test freshness
is a thin needle–like probe with a coil which provides an electromagnetic
force to the probe and also measures its motion. We attempt to capture the
dynamics of the motion of the probe in a mathematical model which can fit
the given data. In doing so we hope to extract information on fish freshness
from some fish–dependent parameters in the model(s).

The first section deals with cleaning up the data. Our group has been
provided with some raw data collected by the fish–probe apparatus for several
different materials:

1. A plaice fish

2. A foam or sponge

3. A clear cling wrap medium

4. A human hand

The data contains noise which was filtered for subsequent analysis. Fast
Fourier Transforms (FFT) and wavelet de–noising techniques were applied
to the data to remove the noise. The re–constructed data was useful in
obtaining estimates for the velocity and acceleration of the probe during the
experiments. The scope of our analysis was only concerned with fitting the
data for a plaice fish and foam sponge, and does not include analysis of the
cling wrap and human hand. Mathematical modeling techniques including
nonlinear optimization and the physics of oscillatory systems were used to
describe the dynamics of the probe.

2 Data Filtering and Estimation of

Acceleration

In this part of the project, wavelet de-noising techniques are applied to the
empirical fish probe data for filtering. Based on the filtered data, the accel-
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eration was computed numerically.

2.1 Wavelet Shrinkage De–noising

Our objective was to suppress the noise and recover the signal. Both FFT
and wavelet approaches were implemented to fulfill the task. Because of the
multi–resolution property of the wavelet transform, wavelet–based de–noising
produced better results than the FFT approach.

To recover a signal the noise must be removed before proceeding with
further data analysis. The wavelet de-noising procedure consists of three
steps:

1. A linear forward wavelet transform

2. A nonlinear shrinkage de-noising

3. A linear inverse wavelet transform

Let X(t) represent a set of observed data, and assume

X(t) = S(t) +N(t) (2.1)

contains the true signal S(t) with additive noise N(t) as functions in
time t to be sampled. Let W(·) and W−1(·) denote the forward and inverse
wavelet transform operators. Let D(·, λ) denote the de-noising operator with

threshold λ. We intend to de-noise X(t) to recover Ŝ(t) as an estimate of
S(t). The basic version of the procedure consists of three steps, including
decomposition, obtaining thresholding detail coefficients, and reconstruction.
It is summarized as

Y =W(X)

Z = D(Y, λ)

Ŝ =W−1(Z)

(2.2)

For the de-noising operator D, given threshold λ for the data U ,

D(U , λ) = sgn(U)max(0, |U| − λ) (2.3)

defines nonlinear soft thresholding. Many different schemes have been devel-
oped on selection of de-noising operator [1, 2].
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In this application, the data was first processed by using 5–level Haar
wavelet transform, then we removed the finer wavelet coefficients b5 and b4.
After that, we performed the inverse transform and recovered the clean data.
The processes were carried out by using the wavelet toolbox in Matlab [3].
The results for the fish data are shown in Figures 1 to 2. Figure 2 contains the
wavelet de–noising results and the original fish data (offset for comparison).
The clean signals for the foam and cling film are included in Figures 3 and
4.
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Figure 1: FFT (left) and wavelet (right) de–noising results for the original
fish data.

2.2 Numerical Computation of Acceleration

After we obtained the clean data by using wavelet de–noising, the acceler-
ations were computed using finite difference approximation. The position
data x(t) can be calculated from the de–noised voltage data u(t) as follows:

x(t) = 10−3 × 0.8u(t)mm/V (2.4)

First the velocity v(t) can be computed as

v(t) =
x(t+∆t)− x(t)

∆t
(2.5)
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Figure 2: Comparison of the wavelet de–noised data and the original data
(offset) for a plaice fish.
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Figure 3: De–noising results of timfoam data.
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Figure 4: De–noising results of cling film data.

where ∆t = 10−3 is the sample rate of the sensor.
Because of the differentiation process, the noise in the position signal

was amplified, and in order to increase the signal to noise ratio (SNR), the
de–noising routine was also applied to the velocity data v(t) to generate the
clean signal v1(t). The acceleration a(t) was computed as

a(t) ≈
a(t+∆t)− a(t)

∆t
(2.6)

With the de–noised data we obtained continuous acceleration data for
further analysis.

3 Analysis of the Signal

The graphs describing the reponse from the plaice fish and foam material are
displyed in Figures 7 and 8. It is obvious from the Figures that the motion
of the probe exhibits three distinct behaviors during an experiment (for both
the fish and foam cases). Therefore we model these phases as independent
processes:

1. Phase A: The initial phase resembles an oscillating decaying exponen-
tial function which might be modelled as a mass-spring system with
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Figure 5: Estimation of acceleration from clean data (fish).
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Figure 6: Estimation of acceleration from clean data (foam).
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damping. This phase coincides with the initial force applied by the
probe on the fish or foam.

2. Phase B: The probe continues to exert a constant force on the fish
(foam), and a linearly (exponentially) decaying function is observed
which indicates motion with constant or slowly changing velocity.

3. Phase C: In the final phase damped oscillations are again observed as
the force is removed.
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Figure 7: The response of the probe to application of a plaice fish.

The following sections describe the motion of the fish–probe system in
the the three phases as isolated processes.

3.1 Phase A

Due to the oscillatory nature of the voltage (position) over time, we first
attempted to model the phenomena by a damped linear oscillator

Mẍ+ βẋ+ αx+Mg = 0

where M = 10g is the mass of the probe, g is the gravity constant and
x = x(t) is the position of the probe.
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Figure 8: The response of the probe to application to foam block.

With constant coefficients, the solution to the above equation is

x(t) = e−δt [A cos(ωt) +B sin(ωt)] +D,

where δ is the decay rate, D is the vertical shift and ω is the frequency. These
intermediate parameters ω and δ can be expressed by the ODE parameters:

ω =

√
α

M
− δ2 and δ =

β

2M
.

We now have to estimate the unknown parameters of the linear ordinary
differential equation from the time series data and then inspect the compat-
ibility of the reconstructed model with the data. The MATLAB nonlinear
least squares fitting algorithm, NLINFIT, was used to perform the parame-
ter estimation. The results in Figure 9 indicate that Phase A can indeed be
modeled by the damped linear oscillator.

The initial and final phases of the motion of the probe were similar in
nature - both were oscillating decaying exponential functions.

3.2 Phase B

The second phase of the time series is observed from 50 to 800ms after the
initial contact. It is characterised by a steady decay in the magnitude of

10



0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Time (ms)

Vo
lta

ge

Phase A:  Fish
Sum of Squares Error:  0.0537

Original Data
Linear ODE Model Reconstruction

Figure 9: The fit obtained for Phase A by modeling the original fish data
with a damped linear oscillator.
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Figure 10: The fit obtained for Phase A by modeling the original foam data
with a damped linear oscillator.
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displacement following the transient oscillatory behaviour observed in Phase
A. We hypothesized that phase B consists of an inelastic deformation because
the final equilibrium state at t = 1000ms is somewhat depressed below the
initial condition at t = 0.

To model the decrease in the magnitude of the displacement, we attempt
to fit the data first with a decreasing exponential function of the form

x(t) = Ae−γt +B, (3.7)

with paramters A, B and γ. As an alternative, we used a linear model,

x(t) = Ct+D, (3.8)

with parameters C and D.
The residuals are minimized in the least squares sense for the above data

sets giving the functions

x(t) = 28.45e−0.01368t − 27.91 or (3.9)

x(t) = −0.3874t+ 0.5357 (3.10)

that fit the fish data and

x(t) = 0.2306e−19.56t + 0.2994 or (3.11)

x(t) = −0.3104t+ 0.3928 (3.12)

for the foam data. These results are plotted in Figure 11 and we note the
linear and exponential functions are essentially identical for the fish data,
both having a least squares residual of about 0.05. For the foam data, the
exponential function provides a much better fit with a least squares residual
of 0.016 as opposed to 0.47 for the linear fit; this is to be expected because,
as seen in Figure 11, the linear function cannot model the curvature of the
data effectively.

As a possible model of this behaviour, consider a particle subjected to
a constant force F moving in a visco-elastic medium with elastic coefficient
α and viscosity β. With this model, the kinematics are determined by the
equation

αx(t) + β
dx

dt
= F. (3.13)

Integrating this equation gives the exact solution

x(t) =

(
X0 +

F

α

)
e−

α
β
t +

F

α
, (3.14)
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Figure 11: Exponential and linear functions fit to the phase B portion of the
data from the fish and the foam experiments.
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where x(0) = X0 is the initial condition for the ODE. In the absence of an
elastic term, the kinematics are determined by

β
dx

dt
= F (3.15)

with corresponding exact solution

x(t) = X0 +
F

β
t. (3.16)

It also seems plausible that we could derive Equation (3.16) by considering
Darcy’s Law for the flow of fluid through a porous medium (the fish flesh).
However, we unfortunately did not have sufficient time to develop this idea.

The parameters in the solutions Equation (3.14) and Equation (3.16) can
be determined by matching with Equation (3.7) and Equation (3.8).

Further, in the limit of vanishing elasticity α, the solution Equation (3.14)
reduces to Equation (3.16) since

x(t) =

(
X0 −

F

α

)
e−

α
β
t +

F

α

=

(
X0 −

F

α

)(
1−

t

β
α +

1

2

(
t

β

)
α2 + · · ·

)
+
F

α

= X0 + (F − αX0)

(
t

β

)
−

1

2
(F − αX0)

(
t

β

)2

α + · · ·

→ X0 +
F

β
t as α→ 0.

Thus, this model suggests that the foam acts as a visco-elastic medium during
phase B while the fish acts as a viscous medium with vanishing elasticity.
Indeed, this is supported by the small time constant γ in the exponential fit
for the fish data.

3.3 Phase C

We define phase C as beginning when the force on the probe is released at
around 780ms. We consider both the fish and foam data during this phase.
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3.3.1 The Fish Data

We first consider the fish data. After the force is released, the probe is pushed
upwards by the skin of the fish and enters an apparent damped oscillation.

Our initial model was to describe the motion by the ODE

µẍ+ β̃ẋ+ α̃x+ µg = 0, (3.17)

where µ = 1 + M
m

is the effective mass of the oscillator (M is the mass of

the probe, m is a mass unit of the skin) and α̃ and β̃ are respectively the
restoring and friction parameters. The µg term describes the force due to
gravity. We fitted the general solution

x(t) = Ae−δt cos(wt− φ) +D, (3.18)

to the data by matching the parameters A, δ, ω, φ and D where δ and ω are
related to ODE cofficients by

δ =
β̃

2µ
, (3.19)

ω2 =
α̃

µ
− δ2. (3.20)

Results of a least squares fit are shown in Figure 12.
We note that the fit apparently matches the first period of the oscillations

quite well but the solution quickly drifts out of phase. Therefore, the model
described by Equation (3.18) should be modified. One strategy is to replace

the constant coefficients α̃ and β̃ with functions of x and ẋ respectively. We
considered these corrections up to second order, i.e.,

α̃(x) = α0 + α1x+ α2x
2 (3.21)

β̃(ẋ) = β0 + β1ẋ+ β2ẋ
2 (3.22)

(3.23)

However, no significant change was noticed between this non-linear model
and the linear approach shown in Figure 12.

After the failure of the non-linear model, we attempted to gain additional
insight into the physics of the problem. Therefore, we considered the velocity
and acceleration of the probe as computed from the de-noised data (see
Figure 13).
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Figure 12: Phase C — The fit obtained by modeling the original fish data
with a damped nonlinear oscillator.

We noticed that between times t1 = 790ms and t2 = 808ms, the acceler-
ation is almost constant, indicating that the probe is a constant acceleration
over 18ms which does not coincide with motion due to a damped oscilla-
tor. Note the agreement with the velocity which appears to have a linear
behaviour during the same time. However, before and after this acceleration
plateau, the motion seems plausibly described by damped oscillations. For
convenience we call the time interval [790ms, 808ms] Section II and refer to
the intervals [780ms, 789ms] and [809ms, 1000ms] as Section I and Section III,
respectively.

The different types of motion of the probe in these three sections suggest
that the probe is starting to perform a harmonic oscillation (Section I) and
looses contact near t1 = 790ms. During Section II, the probe (apparenty
in “free-fall”) is dealt with below. Near time t2 = 808ms the skin and the
probe collide and again behave as a single oscillator. The motion in Section I
and III must be driven by the ODE given in Equation (3.18). Therefore the
frequency ω, the decay rate δ, and the baseline D of the signal must be in
agreement. However, we allowed that the intermediate Section II introduces
an amplitude and a phase correction to the solution of the ODE in the last
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Figure 13: (Above) Original Phase C data with acceleration overlay. The
region where the probe is in free fall is highlighted.
(Below) The fit obtained by modeling the original fish data as an impact
oscillator (loss of contact model).
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section. We then fitted the (de-noised) data to the functions

x(t) = Ae−δt cos(ωt+ φ) +D, t ∈ Section I, (3.24)

x(t) = Be−δt cos(ωt+ θ) +D, t ∈ Section III. (3.25)

The results of the least squares fit is displayed in the relevant parts of Fig-
ure 13 (i.e., the two solid curves). We emphasize that the fit is reasonably
close to the data. This confirms our conjecture that the probe performs a
damped oscillation as long as it is in contact with the skin.

We focus our attention on Section II to understand the motion of the
probe over the entire time range of Phase C. After losing contact with the
skin, the probe is constantly accelerated over the time range of Section II
and therefore its position function x(t) obeys the ODE

ẍ− ĝ = 0. (3.26)

The constant ĝ can be determined from the acceleration data in Figure 13.
We expected that ĝ match the gravitational constant g = −9.81m/s2. How-
ever, by taking the average of the acceleration data over the plateau in Sec-
tion II, ĝ turned out to be ĝ = −6.3m/s2. A plausible explanation for this
reduced gravitational acceleration could be the effects of friction from inside
the apparatus.

To solve Equation (3.26) we chose initial conditions such that the position
function x(t) and the velocity ẋ(t) became contionuous at the point, t1 =
790ms. The solution is a parabolic path and is plotted in Figure 13 as a
dashed curve. Note that the “free fall” not only fits the motion in Section II
very well but also connects to the damped oscillatory motion in Section III.

Unfortunately, it is difficult to determine α̃ and β̃ because of their de-
pendence on µ. This is problematic because we have very little information
about µ; mostly because we did not succeed in finding a way to extract sig-
nificant information about the motion of the fish skin during Section II. A
possible approach is that some information could be extracted by assum-
ing that momentum is conserved by the collision at t2. However, we had
insufficient time to properly persue this option.

3.3.2 The Foam Data

We began modeling the foam data in much the same way as we initially
modeled the fish data, i.e., as a a damped linear oscillator. The resulting
model was not a good fit.
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The next model attempted was the generalized damped oscillator with
non-linear coefficients (again, with up to quadratic corrections) for viscosity,
β = β0 +β1ẋ+β2ẋ

2, and the restoring force, α = α0 +α1x+α2x
2. This new

model demonstrated considerable improvement over the linear case, i.e., the
reconstructed ODE model was an excellent fit (see Figure 14.
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Figure 14: Phase C — The fit obtained by modeling the original foam data
with a damped non-linear oscillator.

From here, we can conclude that the probe probably did not leave the
surface during Phase C. Overall, the probe response for foam can accuractely
be modeled as a visco-elastic system, as opposed to the probe response for
the fish — indicating that the fish is not a perfect visco-elastic material.
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4 Conclusions

We gained a fundamental understanding of the dynamics of the given problem
for both the fish and the foam data. In this sense, the modeling was success-
ful. In particular, the loss-of-contact model as an impact oscillator during
Phase C was surprisingly successful. However, although we have identified
many parameters of the model, correlating these parameters with freshness
requires several (perferably many) samples of fish of various freshness. Thus,
when it comes to predicting freshness of the fish, we simply do not have
enough data to make any claims.

It seems plausible that the restoring and damping parameters would be
indicators of freshness. Recall that, in Phase C, we were unable to extract
the values of these parameters from the frequency, ω, and decay rate, δ, since
we could not determine µ. However, it is possible that ω and δ are themselves
indicators using µ as a fish-dependent constant.
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A Source Code

A.1 Phase A Codes

A.1.1 Phase A Fit.m

%==================================================================================

function [P, V, F]= Phase_A_Fit( time, voltage, t1, t2, baseline )

% Estimate the parameters (coefficients) of the nonlinear ODE for Phase A

% time: time vector of the signal (SCALE IS ’MS’, i.e. 0ms, 1ms, 2ms, ...

% voltage: position data of the probe/needle

% -- time and voltage must be column vectors

% t1: time of the first crest in the data

% t2: time of the second crest in the data

% -- from t1 and t2, a rough estimate of the decay rate and period can be computed,

% whereby all subsequent initial parameters can be computed

% baseline: guess for the steady-state voltage for Phase A

%==================================================================================

% Reconstructed Voltage

global V;

% Estimate parameters

Mass = 10;

T = t2-t1; % Period

Omega = 2*pi/T; % Frequency

Delta = -1/T * log(voltage(t2)/voltage(t1)); % Decay rate

Beta = 2*Mass*Delta; % Damping coefficient

Alpha = Mass*(Omega^2 + Delta^2); % Restoring force coeffient

Shift = baseline; % Steady-state voltage

A = voltage(1)-baseline; % Initial amplitude for cos(omega t)

B = 0.1; % Initial amplitide for sin(omega t)

P0 = [Delta Omega Shift A B]; % Consolidate initial parameters into one vector

%Find Optimal Parameters

P = nlinfit(time,voltage,@Phase_A_NLObj,P0);

% Unroll the parameters

Delta = P(1);

Omega = P(2);

Shift = P(3);

A = P(4);

B = P(5);

% Reconstruct the voltage from the estimated parameters

V = exp(-Delta*time).*( A *cos(Omega*time) + B*sin(Omega*time) ) + Shift;

% Compute the sum of squares error term (not normalized to the length of the vector

F = sum((V-voltage).^2);

return
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A.1.2 Phase A NLObj.m

%==========================================================================

function x = Phase_A_NLObj(P,t)

% Objective function to be minimized by NLINFIT

%==========================================================================

% Unroll parameters

Delta = P(1);

Omega = P(2);

Shift = P(3);

A = P(4);

B = P(5);

% Equation to fit

x = exp(-Delta * t) .* (A*cos(Omega*t) + B*sin(Omega*t)) + Shift;

return

A.1.3 Phase C Fit.m

%==================================================================================

function [P, V, F] = Phase_C_Fit(time,voltage,t1,t2,baseline)

% Estimate the parameters (coefficients) of the nonlinear ODE for Phase C

% time: time vector of the signal (SCALE IS ’MS’, i.e. 0ms, 1ms, 2ms, ...

% voltage: position data of the probe/needle

% -- time and voltage must be column vectors

% t1: time of the first crest in the data

% t2: time of the second crest in the data

% -- from t1 and t2, a rough estimate of the decay rate and period can be computed,

% whereby all subsequent initial parameters can be computed

% baseline: guess for the steady-state voltage for Phase C

%==================================================================================

% Reconstructed Voltage

global V;

% Estimate parameters

Mass = 10;

T = t2-t1; % Period

Omega = 2*pi/T; % Frequency

Delta = -1/T * log(voltage(t2)/voltage(t1)); % Decay Rate

Beta = 2*Mass*Delta; % Damping coefficient

Alpha = Mass*(Omega^2 + Delta^2); % Restoring Force Coefficient

Shift = baseline; % Steady-state voltage

P0 = [[Beta 0 0] [Alpha 0 0] Shift]; % Consolidate initial parameters into one vector

IC = [voltage(1)-baseline; 0]; % Initial conditions for ODE

%Find Optimal Parameters

[P,F] = fminsearch(@Phase_C_Obj, P0, [], time, voltage, IC);

return

A.1.4 Phase C Obj.m

%==========================================================================
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function f = Phase_C_Obj(P,t,x,IC)

% Compute Objective Function where the minimizer, x, for the objective function is

% derived from the numerical solution of the ODE

%==========================================================================

% Plug in current ODE parameters and compute current minimizer, x, based on the

% the numerical solution to the second-order of ODEs

[T,X] = ode15s(@Phase_C_Ode, t, IC, [], P);

% Extract reconstructed voltage

global V;

shift = P(end);

V = X(:,1) + shift;

f = sum( (x-V).^2 );

disp(sprintf(’f = %9.7f’,f));

return

A.1.5 Phase C Ode.m

%==========================================================================

function f = Phase_C_Ode(t,x,P)

% M-function which define the system 2nd-order 0DE as system of 1st-order

% ODEs which hypothetically describe the behavior of Phase C

%==========================================================================

% Define the coefficients of the ODE

M = 10;

[Beta,Alpha] = tweak_parameters(x,P);

% Compute the RHS of system of 1st-order ODEs

f = zeros(2,1);

f(1) = x(2);

f(2) = (-Beta/M)*x(2) + (-Alpha/M)*x(1);

return

%==========================================================================

function [Beta,Alpha] = tweak_parameters(x,P)

% Define the coefficients of the ODE

%==========================================================================

% Unroll the parameter vector into meaningful components

beta = P(1:3);

alpha = P(4:6);

% Define the nonlinear damping and restoring force

Beta = beta(1) + beta(2)*x(2) + beta(3)*x(2)^2;

Alpha = alpha(1) + alpha(2)*x(1) + alpha(3)*x(1)^2;

return

A.2 Phase C Codes

The code phasec minimizer.m matches the parameters for Section I and III
of Phase C as described above. It uses phasec cost.m as the cost function to
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minimize.

A.2.1 phasec minimizer.m

%PHASEC_MINIMIZER This script minimizes the parameters in the

% general solution for Section I and Section III of Phase C

% simultaneously

close all;

clear all;

% uncomment for the fish data

%rawdata = load(’b1.mat’);

% uncomment for the clean fish data:

load(’b1_clean’);

rawdata(:, 1) = [1:1024]’;

rawdata(:, 2) = u1’;

% the time boundaries

T10 = 780+1; % these are off by one!

T1F = 790+1;

T20 = 806+1;

T2F = 879+1;

time1offset = rawdata(T10,1);

time1 = rawdata(T10:T1F, 1) - time1offset;

depth1 = rawdata(T10:T1F, 2);

time2offset = rawdata(T20,1);

time2 = rawdata(T20:T2F, 1) - time2offset;

depth2 = rawdata(T20:T2F, 2);

% this is just used for plotting

alldepth = rawdata(T10:T2F, 2);

alltime = rawdata(T10:T2F, 1);

% number of times to restart optimization. basically we want to

% avoid local minima

N = 100;

% stores parameters values and the associated cost value

Xs = zeros(N,6);

fvals = zeros(N,1);

figure(1);

clf;

plot(alltime, alldepth, ’b-’);

hold on;

for n = 1:N

% these are initial values for the parameters

X0 = [.04*rand+.02 .4*rand .1*rand+.9 -1*rand -.4*rand pi*rand-pi/2];

[X,fval] = fminsearch(@pc_sec1_cost_5, X0, [], time1, depth1, time2, depth2);

Xs(n,:) = X;
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fvals(n) = fval;

delta = X(1);

omega = X(2);

D = X(3);

A = X(4);

B = X(5);

phi2 = X(6);

phi = atan(-delta/omega);

fval

y1 = A*exp(-delta*time1) .* cos(omega*time1 + phi) + D;

y2 = B*exp(-delta*time2) .* cos(omega*time2 + phi2) + D;

plot(time1+time1offset, y1, ’r-’);

plot(time2+time2offset, y2, ’m-’);

pause(0);

if(mod(n, 10) == 0)

disp(sprintf(’%10d/%d done’, n, N));

end

end

% find the index of one of the global minima

[minfval, js] = min(fvals);

j = js(1);

minfval

delta = Xs(j,1)

omega = Xs(j,2)

D = Xs(j,3)

A = Xs(j,4)

B = Xs(j,5)

phi2 = Xs(j,6)

phi = atan(-delta/omega);

y1 = A*exp(-delta*time1) .* cos(omega*time1+phi) + D;

y2 = B*exp(-delta*time2) .* cos(omega*time2+phi2) + D;

figure(2);

clf;

plot(alltime, alldepth, ’b-’);

hold on;

plot(time1+time1offset, y1, ’r-’);

plot(time2+time2offset, y2, ’r-’);

pause(0);

figure(3);

clf;

plot(sort(fvals));

save pc_plot HACK_y1 HACK_y1p HACK_y2 HACK_y2p T10 T1F T20 T2F delta ...

omega D A B phi phi2 minfval time1 time2 time1offset time2offset ...

alltime alldepth
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A.2.2 phasec cost.m

function cost = phasec_cost(X, time1, depth1, time2, depth2)

%PHASEC_COST Cost function to minimized for phase B

% The X is the input to the function and the times and depths

% never change (they are the parameters to this function)

% see below...

global HACK_y1 HACK_y1p HACK_y2 HACK_y2p;

delta = X(1);

omega = X(2);

D = X(3);

A = X(4);

B = X(5);

phi2 = X(6);

phi = atan(-delta/omega);

y1 = A*exp(-delta*time1) .* cos(omega*time1 + phi) + D;

y2 = B*exp(-delta*time2) .* cos(omega*time2 + phi2) + D;

cost = sum((y1 - depth1).^2) + sum((y2 - depth2).^2);

% don’t ask don’t tell...

HACK_y1 = y1;

HACK_y1p = -A*delta*exp(-delta*time1) .* cos(omega*time1+phi) - ...

A*exp(-delta*time1) .* sin(omega*time1+phi)*omega;

HACK_y2 = y2;

HACK_y2p = -A*delta*exp(-delta*time2) .* cos(omega*time2+phi2) - ...

A*exp(-delta*time2) .* sin(omega*time2+phi2)*omega;
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