
THE IMPLICIT CLOSEST POINT METHOD FOR THE NUMERICAL
SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON

SURFACES

COLIN B. MACDONALD∗ AND STEVEN J. RUUTH†

Abstract. Many applications in the natural and applied sciences require the solutions of partial
differential equations (PDEs) on surfaces or more general manifolds. The Closest Point Method is
a simple and accurate embedding method for numerically approximating PDEs on rather general
smooth surfaces. However, the original formulation is designed to use explicit time stepping. This
may lead to a strict time-step restriction for some important PDEs such as those involving the
Laplace-Beltrami operator or higher-order derivative operators. To achieve improved stability and
efficiency, we introduce a new implicit Closest Point Method for surface PDEs. The method allows
for large, stable time steps while retaining the principal benefits of the original method. In particular,
it maintains the order of accuracy of the discretization of the underlying embedding PDE, it works
on sharply defined bands without degrading the accuracy of the method, and it applies to general
smooth surfaces. It also is very simple and may be applied to a rather general class of surface PDEs.
Convergence studies for the in-surface heat equation and a fourth-order biharmonic problem are
given to illustrate the accuracy of the method. We demonstrate the flexibility and generality of the
method by treating flows involving diffusion, reaction-diffusion and fourth-order spatial derivatives
on a variety of interesting surfaces including surfaces of mixed codimension.

Key words. Closest Point Method, surface computation, implicit surfaces, partial differential
equations, implicit time stepping, Laplace–Beltrami operator, biharmonic operator, surface diffusion

AMS subject classifications. 65M06, 58J35, 65M20

1. Introduction. Partial differential equations are ubiquitous throughout the
sciences and applied sciences. Because analytical solutions are rarely possible, the
practical importance of accurate and efficient numerical methods for PDEs cannot be
overemphasized. There has been a great effort made to develop numerical methods
for many important classes of PDEs. These efforts often focus on finding solutions
in R

1, R
2 and R

3. But problems involving general differential equations also arise
on manifolds (such as a two-dimensional curved surface or a one-dimensional curved
filament) in some embedding space (such as R

3). For example, in material science
one might wish to examine phase change of a material on a surface [36]. In biological
modeling, one might study wound healing on skin [27], or the evolution of a pattern
on an animal coat [24]. Computer graphics and image processing also frequently use
PDEs on surfaces; for example, they might use such methods to place a texture on a
surface [40], segment out objects defined in surface textures [37] or restore a damaged
pattern [5] on a surface such as a vase.

PDEs on surfaces are traditionally handled by one of several techniques. These
include finite element discretization on a triangulation of the surface [18, 9], dis-
cretizations based on some parameterization of the surface [11, 35, 16], and embed-
ding techniques [6, 8, 7, 14, 15, 10, 25] which solve some embedding PDE in a small
region near the surface. Naturally, each class of method has its own advantages and
disadvantages. The finite element approach can treat elliptic equations, but is often

∗Department of Mathematics, University of California Los Angeles, CA 90095, USA
(cbm@math.ucla.edu). The work of this author was supported by a grant from NSERC Canada,
an NSERC postdoctoral fellowship and NSF grant number CCF-0321917.

†Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6
Canada (sruuth@sfu.ca). The work of this author was partially supported by a grant from NSERC
Canada.

1

2 C. B. MACDONALD AND S. J. RUUTH

less effective when convective or advective terms arise. Parameterization methods
can be effective in certain specialized situations, but have the deficiency of intro-
ducing distortions and singularities into the method through the parameterization
[11]. Methods within the embedding class have the attractive feature of being able to
work in standard Cartesian coordinates, using Cartesian grid methods. Frequently,
however, such methods are built around level set representations of the surface, a
property that complicates the treatment of general open surfaces or surfaces without
orientation, because a standard level set representation needs a well-defined inside
and outside. Furthermore, level-set-based embedding methods typically impose some
artificial boundary conditions when computations are carried out in a small region
surrounding the surface. The imposition of such artificial boundary conditions leads
to low-order accurate results for some important PDEs [14].

Within the embedding class, a method (the Closest Point Method) was developed
and analyzed in [30] which uses a closest point representation of the underlying surface
S. A closest point representation assumes that for any point x in the embedding space
R

d containing S, a (possibly non-unique) point cp(x) ∈ S is known which is closest
to x in Euclidean distance. For smooth surfaces, the closest point representation
is unique in a narrow band around the surface, the width of which depends on, for
example, the principal curvatures. The closest point representation allows for general
surfaces with boundaries and does not require the surface to have an inside/outside.
The surface can be of any codimension, or even of mixed codimension.

Given a closest point representation, a closest point extension which propagates
data off the surface S into the surrounding space R

d is given by u(cp(x)). Closest point
extensions lead to simplified derivative calculations in the embedding space because
they result in functions which are constant in the direction normal to the surface, at
least within a neighborhood of a smooth surface. The relationship between surface
derivatives and derivatives in the embedding space may be made precise using two
fundamental principles [30]. Let ∇ denote the “standard” gradient in R

d and let ∇S

denote the gradient intrinsic to the smooth surface S, then:

Principle 1 (Gradients). For points x on a smooth surface, ∇Su(x) = ∇ (u(cp(x)))
because the function u(cp(x)) is constant in the normal direction and therefore only
varies along the surface. In other words, at points x on the surface, intrinsic surface
gradients ∇Su(x) are the same as gradients of u(cp(x)).

Principle 2 (Divergence). Let ∇S · denote the divergence operator intrinsic to
a smooth surface S and let v be any vector field on R

d that is tangent at S and
also tangent at all surfaces displaced by a fixed distance from S (i.e., all surfaces
defined as level sets of the distance function to S). Then at points x on the surface
∇ · v(x) = ∇S · v(x).

Combinations of these two principles may be made, to encompass very general
second-order differential operators, including the Laplace–Beltrami operator ∆S =
∇S · ∇S , in-surface curvature, and nonlinear diffusion operators [30]. Indeed, even
higher-order and more general derivative replacements may be considered by carrying
out multiple closest point extensions as first described in [30] and demonstrated in
practice in Sections 5 and 6. Notice that the introduction of a closest point extension
step leads us to consider standard PDEs in the embedding space for important classes
of surface PDEs. This in turn enables the use of standard discretizations for the
underlying embedding PDEs.

The Closest Point Method has been applied to a variety of time-dependent prob-
lems including in-surface advection, diffusion, reaction-diffusion, and Hamilton-Jacobi

THE IMPLICIT CLOSEST POINT METHOD 3

equations [30, 23, 22]. In these previous works, time stepping was performed explicitly
and the numerical solution was propagated by alternating between two steps:

1. Evolution of an embedding PDE on a regular Cartesian grid enveloping the
surface using an explicit time-stepping scheme.

2. Extension of the surface data to the surrounding grid points with a closest
point extension, i.e., for grid point x, assign u(x) = u(cp(x)). As cp(x) is
typically not a grid point, this extension is an interpolation step.

This explicit approach to the Closest Point Method works very well for nonstiff prob-
lems such as arise from Hamilton–Jacobi equations. The method achieves high-order
accuracy [23] using standard spatial discretizations and explicit Runge–Kutta time-
stepping methods with time-step sizes ∆t = O(∆x), i.e., on the order of the spatial
grid. It also avoids introducing artificial boundary conditions when computations
are limited to a neighborhood of the surface [30, 23], thereby enabling the method to
localize computations while maintaining the accuracy of the underlying discretization.

Unfortunately, explicit time-stepping methods are a poor choice for many im-
portant PDEs. For example, a severe stability time-step restriction may arise when
spatially discretized diffusion, biharmonic or other stiff terms appear. Such time-
step restrictions can lead to inefficient or impractical algorithms (for example, when
biharmonic terms arise we might anticipate a step-size restriction like ∆t ∼ ∆x4).
Severe time-step restrictions are also possible when local grid refinement is carried
out because the time step will scale like some power of the minimal grid spacing.
On the other hand, the use of implicit time-stepping methods typically leads to mild
stability time-step restrictions, making them natural candidates for treating the stiff
systems arising from certain PDEs. This motivates the development and analysis of
an implicit Closest Point Method.

The remainder of this paper unfolds as follows. In Section 2, the implicit Closest
Point Method is presented. It uses implicit linear multistep or Runge–Kutta time-
stepping schemes and allows for large time steps. When the implicit Closest Point
Method is applied to linear problems such as the in-surface heat equation, each time
step requires a linear system solve: Section 3 discusses the properties of that system.
Numerical results in Sections 4 and 5 demonstrate the high-order accuracy of the
method on the in-surface heat equation and a biharmonic problem. Several applica-
tions are presented, including blurring an image on a triangulated surface, modelling
heat flow on a complicated surface with components of varying codimension, in-surface
pattern formation, and fourth-order “surface diffusion” for an interface on a surface.
Section 6 extends the method to odd-order differential terms.

2. The implicit Closest Point Method. In this section we derive the implicit
Closest Point Method. Before giving a more general construction, we illustrate the
main ideas for the simple, but important case of in-surface heat flow.

2.1. The Closest Point Method for in-surface heat flow. To motivate the
method, let S be a surface embedded in R

d and consider the in-surface heat equation

ut = ∆Su, (2.1a)

u(0, x) = u0(x). (2.1b)

Based on the Principles 1 and 2, we may replace the Laplace–Beltrami operator ∆S

by the standard Laplacian ∆ in the embedding space R
d, provided the argument of

the right hand side is replaced by the closest point operator, cp(x). This leads to the

4 C. B. MACDONALD AND S. J. RUUTH

embedding PDE

ut(t, x) = ∆ (u(t, cp(x))) , (2.2a)

u(0, x) = u0(cp(x)), (2.2b)

which has the property that the solutions of (2.1) and (2.2) agree on the surface [30].
The implicit Closest Point Method is based on discretizing (2.2) directly. For ease

of exposition, in this example we assume the surface S is a curve embedded in 2D and
consider a second-order centered finite difference scheme applied to the Laplacian ∆
in (2.2). This yields

∂

∂t
u(t, x, y) =

1

∆x2

(
− 4u(t, cp(x, y)) + u(t, cp(x + ∆x, y)) + u(t, cp(x − ∆x, y))

+ u(t, cp(x, y + ∆x)) + u(t, cp(x, y − ∆x))
)

+ O(∆x2), (2.3a)

u(0, x, y) = u0(cp(x, y)), (2.3b)

where x and y are still continuous variables (this is not yet a spatial discretization).
The spatial discretization can be completed by choosing a grid {(xi, yj)}, approximat-
ing the solution with nodal values uij , and using interpolation to replace the value of
u(cp(xi, yj)) by a linear combination of nearby nodal values. As the value of cp(xi, yj)
is known beforehand, the interpolation weights can be precomputed using barycentric
Lagrange interpolation [4] (in a dimension-by-dimension fashion). These interpolation
weights and the differentiation weights 1

∆x2 {−4, 1, 1, 1, 1} can then be combined into
a matrix (see Section 2.2 for details) which approximates ∆ (u(t, cp(x, y))). Thus,
this method-of-lines approach yields a linear system of coupled ODEs in time for
uij(t) ≈ u(t, xi, yj). The discretization may then be completed by applying standard
implicit Runge–Kutta or linear multistep methods.

As we shall see in Section 2.2.3, the system resulting from (2.3) is unstable. An
alternate consistent formulation which benefits from improved diagonal dominance
and improved stability arises when the redundant closest point operators are removed
from the discretization (where diagonal terms appear in the discretization consistency
does not require an interpolation to the closest point on the surface). This leads to
the following stabilized form:

∂

∂t
u(t, x, y) =

1

∆x2

(
− 4u(t, x, y) + u(t, cp(x + ∆x, y)) + u(t, cp(x − ∆x, y))

+ u(t, cp(x, y + ∆x)) + u(t, cp(x, y − ∆x))
)

+ O(∆x2), (2.4a)

u(0, x, y) = u0(cp(x, y)), (2.4b)

where the only change is that the diagonal entries no longer involve the closest point
operator cp. Note that this equation (2.4) and the previous (2.3) agree at the surface
because for points (x, y) on the surface we have cp(x, y) = (x, y). This ensures that
the solution of (2.4) is consistent with that of (2.1).

2.2. Matrix formulation of the Closest Point Method. The general matrix
formulation of the Closest Point Method introduces a matrix operator (the “exten-
sion matrix”) to discretize all instances of the closest point operator. Our approach
explicitly constructs the extension matrix. This enables the use of either direct or
iterative matrix solvers, and makes the analysis of the ODE system straightforward.
The alternative approach of computing an iterative solution of the implicit equations

THE IMPLICIT CLOSEST POINT METHOD 5

ld

ld

bc bc bc
bc

bc

bc bc bc
bc

bc

b

b b b b

b b b b

b b b

b b b b

b

b

b

b

b b b b

b b b b

b b b b

b b b bb

b

b

b

b b b b

b b b b

b

b

b

b

b

b

b

b b b b

b b b b

b

b

b

b

b b b b

b

b

b

b

b

b

b

b

b

b

b

b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b b b

b b b b

b

b

b

b

b

b

b

b

b b b

b b

b b

b b

b b

b

b

b

b

b b b b

b

b

b

b

b b b b

b

b

b

b

b b b b

b

b

b

b

b

b

b

b

b b b b

b b b b

b

b

b

b

b

b

b

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc bc bc bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc bc bc bcbc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

Fig. 2.1: Example of the lists of grid points L (in-
dicated by •) and G (indicated by ◦) where the
curve S is a circle. The interpolation stencil is a
4× 4 grid (arising, for example, from using degree
p = 3 barycentric Lagrange interpolation) and the
shaded regions illustrate the use of this stencil at
the two points on the circle indicated by ♦. Five-
point differentiation stencils are shown for two ex-
ample points in L, in one case illustrating the use
of ghost points.

without explicitly constructing the extension matrix has the advantage of being closer
with respect to implementation to the explicit Closest Point Method. This alternative
approach is discussed briefly in Section 3.2, and will be treated in detail as part of
future work.

We now give the details on the general matrix formulation. Suppose the surface S
is embedded in R

d. Assume we have an interpolation scheme where the interpolated
value is a linear combination of the values at neighbouring grid points in, for example,
a hypercube in R

d. These neighbouring grid points form the interpolation stencil of
the scheme. Various interpolation techniques are possible. Similar to the explicit
Closest Point Method in [30], we will use barycentric Lagrange interpolation [4] of
degree p, in a dimension-by-dimension fashion, so the hypercube has p + 1 points in
each coordinate direction.

Now consider two discrete ordered lists of points in the embedding space. The
first is L = {x1, x2, . . . , xm}. This list contains every grid point which can appear
in the interpolation stencil for some point on the surface S.1 The grid points in L
form the computational band on which the numerical solution is defined. Specifically,
to approximate the solution function u at all points in L we introduce the vector
u ∈ R

m with entries ui ≈ u(xi) for each grid point xi ∈ L. The second list of points
G = {xm+1, xm+2, . . . , xm+mg

} is disjoint from L and contains mg additional “ghost
points” along the edges of the computational band. These points will be used in the
derivation below but their values are not propagated in time. Figure 2.1 shows an
example of the two lists L and G where the curve S consists of a circle embedded in
R

2. Algorithms for the construction of these lists are given in Appendix A.

Finally, we require two other vectors over the list L and G for use in the derivation.
Let u(cp(L)) ∈ R

m denote the vector with components u(cp(xi)) for xi ∈ L and let
u(cp(G)) ∈ R

mg denote the vector with components u(cp(xm+i)) for xm+i ∈ G.

2.2.1. The extension matrix. The closest point extension is an operator which
assigns a value of u(cp(x)) to u(x). In a discrete setting, cp(xi) is generally not a grid
point and interpolation is used to approximate u(cp(xi)). Because each interpolation
is a linear combination of values in u, this operation can be expressed as a matrix
multiplication using the extension matrix E defined as follows

1This intuitive condition is sufficient. A slightly smaller computational band is often possible by
taking L to be the list of all interpolation nodes over just the interpolated points cp(xi), xi ∈ L ∪G

rather than over all of the surface S. This is the approach used in Appendix A to construct L.

6 C. B. MACDONALD AND S. J. RUUTH

Definition 1. [extension matrix E] Given the vectors u, u(cp(L)), u(cp(G))
and an interpolation scheme as described above, the extension matrix is a (m+mg)×
m matrix operator E such that

(
u(cp(L))
u(cp(G))

)
≈ Eu =

E

u

. (2.5)

The nonzero entries in the ith row of E consist of the weights in the interpolation
scheme for u(cp(xi)). That is, the components of the matrix E = [γij] are

γij =

{
wj if xj is in the interpolation stencil for cp(xi),

0 otherwise,

with wj denoting the weight associated with the grid point xj in the interpolation
scheme for point cp(xi).

2.2.2. The discrete differential operator. We are now in a position to intro-
duce the discrete differential operator. Our exposition will treat the Laplace–Beltrami
operator ∆S and the associated in-surface heat equation. More general operators are
certainly possible, however, the Laplace–Beltrami operator is particularly instructive
because its spatial discretization may be stiff and because it is the key building block
for the nonlinear and high-order flows we shall consider in subsequent sections.

We begin by recalling that for points x on the surface, ∆Su(x) is consistent with
∆ (u(cp(x))). We approximate the function ∆ (u(cp(x))) with a vector of m values,
with the ith entry corresponding to an approximation of ∆ (u(cp(xi))) for xi ∈ L.
The vector is given by the right-hand side of

∆u(cp(x)) ≈ ∆h

(
u(cp(L))
u(cp(G))

)
, (2.6)

where ∆h is an m× (m + mg) matrix which approximates the Laplacian operator in
R

d using a linear finite difference scheme (e.g., second-order or fourth-order centered
differences). The finite difference scheme is applied at each point in L by taking a
combination of neighbouring points appearing in a differentiation stencil. Some of
these neighbouring grid points will be in L with corresponding values of u(cp(x)) in
the vector u(cp(L)); the remaining grid points will be ghost points in G, and hence
u(cp(G)) also appears in (2.6). For example, Figure 2.1 shows two differentiation
stencils, one of which includes a ghost point.

From (2.5), approximations of the vectors u(cp(L)) and u(cp(G)) are obtained by
left multiplying the vector u by the extension matrix E. Applying this to (2.6) yields

∆u(cp(x)) ≈ ∆h

(
u(cp(L))
u(cp(G))

)
≈ ∆hEu =

∆h

E

u

= = M̃u,

where M̃ = ∆hE is an m × m matrix. Thus a spatial discretization of the in-surface
heat equation ut = ∆Su is

∂

∂t
u = M̃u. (2.7)

Note that the ghost points and u(cp(G)) were used only in the derivation; the system
(2.7) is defined on the list of grid points L.

THE IMPLICIT CLOSEST POINT METHOD 7

−500 −400 −300 −200 −100 0

−30

−20

−10

0

10

20

30

0 5 10 15 20

−10

−5

0

5

10

−600−500−400−300−200−100 0

−30

−20

−10

0

10

20

30

0 5 10 15 20

−10

−5

0

5

10

Fig. 2.2: Spectra of the M̃ (left) and M (right) matrices. The geometry is a unit circle
in 2D, using interpolation matrix E with biquartic interpolation (p = 4), and a mesh

spacing of ∆x = 0.1. Observe that M̃ has eigenvalues in the right half plane.

2.2.3. Stabilizing the Closest Point Method. By examining the spectra
of M̃ given in Figure 2.2 (left), we find that the matrix has some eigenvalues with
positive real parts. In the solution of the semi-discrete system (2.7), these positive
eigenvalues correspond to exponential growth in the associated eigenvectors. But the
Laplace–Beltrami operator is diffusive so these exponentially growing components
correspond to instability, and in fact, this instability is observed in practice. For
example, Figure 2.3(a) displays the oscillatory results obtained for an in-surface heat

flow calculation using the implicit Closest Point Method with M̃.
Fortunately, a stable modification of the implicit Closest Point Method procedure

is straightforward to construct: when approximating ∆Su at the point xi with a finite
difference scheme, we map only the neighbouring points xj of the stencil back to their
closest points cp(xj) and use ui itself instead of u(cp(xi)) (see also (2.4)). This special
treatment of the diagonal elements yields a new m × m matrix

M = stab(∆h, E) := diag∆h + (∆h − diag∆h)E, (2.8a)

or diagrammatically

M

=

diag∆h

+

∆h − diag∆h

E

, (2.8b)

and thus the spatial discretization of the in-surface heat equation is

∂

∂t
u = Mu. (2.9)

As explained in Section 2.1, this splitting eliminates redundant interpolations and
does not impact the consistency of u at the surface. Intuitively, we expect improved
stability from this splitting because the magnitude of the diagonal of the operator
has generally increased relative to the off-diagonal elements (see [22, Section 3.3.3]).
Indeed, a study of the spectra of M for a variety of surfaces [22, Section 3.3.1] indicates
that all eigenvalues of M have negative real parts. See Figure 2.2(b) for the spectra
of the heat equation on a unit circle in 2D and Figure 2.3(b) for the (stable) results
from a related numerical experiment.

8 C. B. MACDONALD AND S. J. RUUTH

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ

u

init. cond.
exact soln
num. soln

(a) eM, unstable

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ

u

init. cond.
exact soln
num. soln

(b) M, stable

Fig. 2.3: Stable and unstable solutions of the in-surface heat equation on a unit circle
embedded in 2D, with ∆x = 0.1, degree p = 4 interpolation, and backward Euler
time stepping until t = 0.6 with ∆t = 1

8∆x. Note oscillations indicating instability in
(a) whereas the numerical solution essentially overlaps the exact solution in (b).

Remark. The two steps of the explicit Closest Point Method for solving ut = ∆Su
can also be formulated using the matrices ∆h and E as follows: (a) perform a forward
Euler time step ũ

n+1 = u
n + ∆t∆hu

n; and (b) perform a closest point extension
u

n+1 = Eũ
n+1. Combining these two steps yields

u
n+1 = Eu

n + ∆t∆hEu
n,

which is notably not the forward Euler time-stepping method applied to either (2.7)
or (2.9). However, it suggests another possible implicit discretization based on back-
ward Euler:

u
n+1 = Eu

n + ∆t∆hEu
n+1. (2.10)

Unfortunately, numerical experiments indicate that (2.10) is often unstable when time
steps larger than those possible with forward Euler are used.

2.3. Truncation error analysis. The error from approximating the Laplace–
Beltrami operator using the implicit Closest Point Method has two components, one
arising from the polynomial interpolation and a second arising from the discretization
of the Laplacian operator ∆h.

Assume that p is the degree of interpolation to be used in the closest point ex-
tension procedure. Also assume an order-q discretization of the underlying Laplacian
operator. In [30] it is shown that if an interpolation of degree p ≥ q + 1 is chosen
then we maintain the order of accuracy of the underlying spatial discretization, i.e.,
we obtain an O(∆xq) truncation error. Conversely, if p < q + 1 the error will be
dominated by the interpolation error, and we obtain an O(∆xp−1) truncation error.
Notice, in particular, that the method will be inconsistent if linear interpolation is cho-
sen. Section 4.1 compares these analytically derived truncation errors with numerical
experiments.

3. Time stepping and matrix properties. The temporal discretization of the
semidiscrete problem (2.9) can be performed using implicit linear multistep methods2,

2Implicit Runge–Kutta methods are also straightforwardly accommodated, particularly for the
case of diagonally implicit schemes [21, 17].

THE IMPLICIT CLOSEST POINT METHOD 9

∆x cond(ABE)
0.4 94.1
0.2 281
0.1 664
0.05 1520
0.025 3114
0.0125 6289
0.00625 12703
0.003125 25984

Table 3.1: Condition numbers for the time-stepping
matrix ABE = I − ∆tM with ∆t = 1

4∆x for various
∆x. The curve S is a unit circle in 2D and the
interpolation is of degree p = 4.

such as the backward differentiation formulas [12]. For each time step, the BDF
methods perform a single linear system solve of the form Au = b with A = I− γ∆tM
for some value of γ that depends on the particular method. For example, the BDF2
applied to (2.9) leads to

[
I − 2

3∆tM
]
u

n+1 = 4
3u

n − 1
3u

n−1. We denote the time-
stepping matrices corresponding to backward Euler and the BDF schemes as ABE,
ABDF2 and ABDF4. The structure and properties of these matrices are important
for understanding the behavior of direct and iterative methods for solving the linear
systems.

3.1. Matrix properties. As previously noted in Section 2.2.3 the eigenvalues
of M have negative real parts, leading to stability when the evolution is treated with
an appropriate (e.g., A-stable) time-stepping scheme.

Table 3.1 lists the condition number for the time-stepping matrix ABE = I−∆tM
for various ∆x. Note that with ∆t = O(∆x), the condition number of the time-
stepping matrix ABE is moderate and only doubles when ∆x is halved. Similar results
are obtained for the time-stepping matrices ABDF2 and ABDF4. The time-stepping
matrices thus appear to be well-conditioned. As discussed in Section 3.2, this is
important for solving the linear system at each time step.

Figure 3.1 shows the sparsity structure of the ∆h, E and M matrices for various
surfaces, values of the grid spacing ∆x, and degree of interpolation p. The effects of the
ghost points G are noticeable on the right of ∆h and the bottom of E. Note that the
composed matrix M has a band-limited profile; this feature is related to the ordering
of the lists L and G chosen by the banding algorithm in Appendix A. Table 3.2
shows some sparsity properties of M including the number of nonzero elements and
the bandwidth. The increasing sparsity as ∆x decreases demonstrates the importance
of iterative solvers as discussed further the next section.

3.2. Solving the linear systems. Performing time stepping for the implicit
Closest Point Method results in large linear systems of the form Au = b. As noted
above, the time-stepping matrices are well-conditioned for the BDF schemes, and
thus direct solves based on variations of LU factorization work well, at least for small
systems such as arise in 2D with a moderate or large grid spacing ∆x. The Matlab
backslash operator or the sparse solver scipy.sparse.linalg.spsolve in SciPy [20] is used
in many of the calculations in Section 4.

The time-stepping matrices become increasingly sparse as ∆x decreases (e.g., Ta-
ble 3.2), potentially causing direct methods to become inefficient due to “fill-in” from
the LU factorization. For large systems, particularly in 3D, iterative schemes are
more efficient both in terms of memory and CPU time. It was shown experimen-
tally in [22, Sections 3.3.3 and 3.3.4] that the backward Euler time-stepping matrix
I − ∆tM associated with the implicit Closest Point Method matrix M is diagonally

10 C. B. MACDONALD AND S. J. RUUTH

S M ∆h E

Circle in 2D,
p = 4, ∆x = 0.2

Sphere in 3D,
p = 2, ∆x = 0.1

Stanford bunny,
p = 3, ∆x = 0.05

Fig. 3.1: Sparsity structure of the M, ∆h and E matrices (from left to right) for the
Laplace–Beltrami operator on various surfaces using degree-p interpolation.

Table 3.2: Sparsity properties of the matrix M for a unit circle in 2D. An increase in
∆x or in the degree of interpolation p leads to an increase in the percentage of nonzero
entries. Roughly the same relation is reflected in the bandwidth as a percentage of
total width.

∆x nonzero entries (percentage) bandwidth (percentage)
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

0.2 12.8 16.3 18.2 21.3 31.7 55.4 51.5 65.6
0.1 6.5 8.0 9.0 10.5 15.8 21.4 27.2 34.1
0.05 3.3 3.9 4.5 5.2 8.8 11.0 18.2 16.3
0.025 1.6 1.9 2.3 2.6 5.6 6.4 8.6 8.1
0.0125 0.8 1.0 1.1 1.3 2.9 2.8 4.5 3.9

dominant and (unsymmetric) positive definite [13] for time steps of ∆t = O(∆x2):
this guarantees convergence for many iterative schemes. Naturally, in practice we
wish to use larger time steps ∆t = O(∆x), and for these step sizes, the backward
Euler matrix I − ∆tM is indefinite and not diagonally dominant. It is interesting to
note that in the examples we have considered [22, Section 3.3.1] the spectral radii of
the Jacobi and Gauss–Seidel iteration matrices are all strictly less than one, and thus
we can expect convergence for those methods. In many of the examples we provide in
Section 4, the GMRES algorithm [38] is used instead, as it seems to converge well in
practice. In these cases, we chose GMRES subroutines available within either SciPy
(scipy.sparse.linalg.gmres) or Matlab (gmres).

THE IMPLICIT CLOSEST POINT METHOD 11

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

‖
e
r
r
o
r
‖
∞

2 nd

-order

N

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

‖
e
r
r
o
r
‖
∞

2 nd

-order

N

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

Fig. 4.1: Numerical convergence study results for the in-surface heat equation on
a circle (left) and a sphere (right) using second-order finite differences, BDF2 time
stepping, and degree p interpolation. Here N = 1

∆x .

We remark that it is not necessary to explicitly construct the matrices M or A in
order to use these iterative schemes. For example, GMRES requires only a subroutine
that computes the product Au. However, in the numerical results that follow, we have
elected to explicitly construct and use the matrices M, ABE, ABDF2 and ABDF4.

4. Numerical results.

4.1. Numerical convergence studies. The convergence of the implicit Closest
Point Method is tested on two problems.

2D test problem. The problem consists of the in-surface heat equation (2.1) on a
unit circle in R

2 with initial conditions u(0, θ) = cos θ + cos 3θ. The exact solution is
u(t, θ) = e−t cos(θ)+ e−9t cos(3θ). In the tests below, the problem is solved discretely
in time until t = 1

2 using BDF schemes. The exact solution is used as the starting
procedure. Linear systems are solved directly with Matlab’s backslash operator.

3D test problem. The problem consists of the in-surface heat equation on a
unit sphere in R

3 with the exact solution given as a series of spherical harmonics
u(t, θ, φ) = 20

3π

∑∞

l=1 e−l2/9e−tl(l+1)Yll(θ, φ), where Ylm represents the degree l order
m real spherical harmonic. In practice, the rapid decay of the coefficients means that
the series can be truncated after only a few terms. The problem is evolved in time
until t = 1

2 using BDF schemes and the exact solution as a starting procedure. Linear
system solves are performed in Matlab with gmres using a tolerance of 1 × 10−10.

4.1.1. Heat equation, second-order differences in space. Figure 4.1 shows
the results of a numerical convergence study on these two problems using second-
order finite differences, the second-order BDF2 scheme with ∆t = 1

8∆x, and various
degrees p of interpolating polynomials. We note clear second-order convergence using
p ≥ 3. The results are consistent with the analysis in Section 2.3. The computational
results appear identical for p ≥ 4 because the error is dominated by the Laplacian
discretization error term and the interpolation error term is insignificant. Degree p = 3
still exhibits second-order convergence but with a larger error constant which suggests
that the interpolation error dominates. Note that p = 2 behaves surprisingly well
(often better than the predicted first-order). As expected, degree p ≤ 1 interpolation
appears inconsistent.

Larger values for the interpolation degree p result in larger interpolation stencils
which translates into denser matrices (see Table 3.2). For second-order finite differ-
ences, degree p = 3 or p = 4 are both good choices as they exhibit clear second-order

12 C. B. MACDONALD AND S. J. RUUTH

10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

‖
e
r
r
o
r
‖
∞

2 nd
-order

4 th

-order

N

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

‖
e
r
r
o
r
‖
∞

2 nd
-order

4 th

-ord
er

N

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

Fig. 4.2: Numerical convergence study results for the in-surface heat equation on
a circle (left) and a sphere (right) using fourth-order finite differences, BDF4 time
stepping, and degree p interpolation. Here N = 1

∆x .

convergence although the error for p = 3 is typically larger than for p = 4. Degree
p ≥ 5 would be excessive for second-order calculations as no benefit in accuracy re-
sults from the extra work required. Degree p = 2 may be appealing for applications
where calculation speed is more important than accuracy.

4.1.2. Heat equation, fourth-order differences in space. The convergence
of the implicit Closest Point Method is next tested using a fourth-order centered finite
difference stencil for ∆h. Figure 4.2 shows the results of a numerical convergence study
on the two test problems above, where time stepping is performed using the fourth-
order BDF4 scheme with ∆t = ∆x (on the circle) and ∆t = 1

4∆x (on the sphere).
We note again that p = 0 and p = 1 degree interpolation appear inconsistent. Degree
p = 2 or p = 3 produce second-order results. Degree p ≥ 4 produces fourth-order
convergence. Note that on this problem, p = 2 and p = 4 performed roughly one
order better than predicted by Section 2.3.

4.2. Heat equation on surfaces. The computations in this section were per-
formed in Python [42] using SciPy [20] and NumPy [26] for numerical calculations.
Visualizations use VTK [33].

Throughout this section, closest point representations of surfaces are obtained
from complicated triangulated surfaces using the method described in [23]. Briefly,
for each triangle in a triangulation, the method determines all nodes that are within
the bandwidth of the triangle (for computations using the Closest Point Method,
nodes that are further away cannot be influenced by that part of the surface). For
each node, this gives a list of triangles. This list is sufficiently small that it is efficient
to directly examine each member to determine the closest triangle (and hence the
closest point on the surface). Note that this method scales linearly with the number
of triangles under the assumption that the closest point function is only needed on a
narrow computational band.

4.2.1. Heat equation on Laurent’s Hand. Figure 4.3 shows the results of
blurring an image on the surface of Laurent’s Hand [31] by solving several steps of
the in-surface heat equation. In this example, the phone number written on the
hand is completely indistinguishable after only a few steps. Note that the Closest
Point Method could also be used to apply an in-surface unsharp mask or other image
processing technique to attempt to recover the phone number from the blurred image.

THE IMPLICIT CLOSEST POINT METHOD 13

(a) t = 0, init. cond. (b) t = 1
400

, step 1 (c) t = 1
200

, step 2 (d) t = 3
200

, step 6

Fig. 4.3: Blurring on the surface of Laurent’s Hand [31] by solving the in-surface heat
equation. The phone number becomes increasingly blurred with each time step. Here
∆x = 1

40 and the length of the hand is about 80∆x. Time stepping is performed

with backward Euler and ∆t = ∆x
10 . The closest point extension uses degree p = 2

interpolation.

4.2.2. Heat equation on a complicated domain. Consider a composite do-
main consisting of Annie Hui’s pig [19] connected by the tail to a filament (an in-
finitesimally thin wire) which is also connected to a sphere. This surface is therefore
comprised of components of mixed codimension: the pig and sphere are codimension-
one whereas the filament is codimension-two. The closest point representation is
straightforward to obtain for this type of composite domain: simply compute the
closest point in each of the three components and then return the closest of the three.

A heat source is applied under the sphere. The temperature u over the surface of
the domain is modelled according to

ut = k(x)∆Su + γ(T − u)g(x), (4.1a)

where the heat coefficient k(x) is chosen as

k(x) =





1 x ∈ pig,

2 x ∈ sphere,

10 x ∈ filament,

(4.1b)

and the forcing term consists of Newton’s law of heating and cooling with constant
γ = 30 and maximum temperature T = 10. The function g(x) is a Gaussian blob in
R

3 which localizes the heat source directly under the sphere. Initially the temperature
is set to zero everywhere. The problem is solved using ∆x = 0.05 and degree p = 3
interpolation. Time stepping is performed to time t = 25 using the BDF2 scheme
with ∆t = 2∆x and a single step of backward Euler as a starting procedure. Thus,
only 250 steps are used in contrast with the roughly 10,000 steps required for explicit
time stepping for this problem.

Figure 4.4 shows the initial conditions and heat distribution at various times. This
example demonstrates the great flexibility of the method with respect to geometry:

14 C. B. MACDONALD AND S. J. RUUTH

(a) Initial conditions (top), solution at t = 1.5 (middle), and at t = 25 (bottom)

(b) Rescaled image showing the heat distribution on the pig at t = 25

Fig. 4.4: Numerical solution of the in-surface heat equation on the composite pig-
wire-sphere domain. At t = 25, the temperature is roughly constant at u = 10 on the
sphere. The pig has warmed up only slightly and there is a temperature gradient in
the wire.

heat flow over a complicated geometry of variable codimension is computationally no
more complicated than for a sphere.

4.2.3. Pattern formation. The solutions of reaction-diffusion equations can
exhibit rich pattern forming behaviour from random initial conditions. The appli-
cation of reaction-diffusion equations on surfaces has been investigated in previous
studies, such as [40] (by computing directly on a surface mesh) and [6] (using a level
set representation of the surface). In this section, the implicit Closest Point Method
is applied to pattern formation problems.

A possible set of reaction-diffusion equations for two chemicals u and v is

ut = f(u, v) + νu∆Su, u(0, x) = u0(x), (4.2a)

vt = g(u, v) + νv∆Sv, v(0, x) = v0(x), (4.2b)

where f and g are nonlinear reaction terms [39]. The chemicals locally react with one
another while at the same time diffusing spatially at different rates. We consider one
particular form of (4.2) known as the Brusselator [28, 43] which has

f(u, v) = a − (b − 1)u + u2v, g(u, v) = bu − u2v.

THE IMPLICIT CLOSEST POINT METHOD 15

(a) νu = 5
900

, t = 25 (b) νu = 3.8
900

, t = 15 (c) νu = 2.5
900

, t = 15

Fig. 4.5: Patterns formed by the Brusselator on the surface of the Stanford Bunny for
different values of νu with a = 3, b = 10.2 and νv = 10/900. Darker color indicates
high concentrations of u. The computation uses ∆t = ∆x = 0.05 with degree p = 2
interpolation and the bunny is scaled to be approximately 2 units long.

The implicit Closest Point Method can be applied to (4.2) using implicit-explicit
(IMEX) time-stepping schemes [3, 2, 29]. Using this approach, the nonlinear reaction
terms are treated explicitly and the linear diffusion terms are treated implicitly. Notice
that this decouples the implicit system solves for u and v and we solve two systems
of the form ABDF2u = b1 and ABDF2v = b2 to advance to the next time step. The
SBDF2 scheme [3] is known to work well for pattern formation problems [29], and it
is used here with one step of IMEX Euler as a starting method. For initial conditions,
small random perturbations around the zero-diffusion (µu = µv = 0) steady state of
u = a and v = b

a are used.
Depending on the values of the coefficients a, b, νu and νv, the Brusselator exhibits

different types of pattern forming behaviour [43]. Figure 4.5 shows the results of three
simulations of the Brusselator on the surface of the Stanford Bunny [41] with a = 3,
b = 10.2, νv = 10/900 and various values of νu. This choice of parameters closely
matches those used for planar calculations in [43, Figure 2a]3, and indeed we notice the
same transition from “honeycomb” (Figure 4.5(a)) to stripes (b) to roughly hexagonal
patterns of spots (c).

5. Biharmonic problems. Consider the fourth-order problem

ut = −∇4
Su, (5.1)

where ∇4
S

is the biharmonic operator intrinsic to the surface. A näıve approach to
solving this problem via the Closest Point Method would introduce a single extension
matrix into the discretization. Unfortunately, when the gradient and divergence op-
erators are combined into a biharmonic operator using a single extension matrix, the
hypotheses for the Principles in Section 1 are violated. We therefore expect that this
approach will not work, and indeed, numerical experiments demonstrate the incon-
sistency of the approach [22].

3We rescale the equations to the size of the bunny which accounts for the additional factors of
1

900
which do not appear in [43].

16 C. B. MACDONALD AND S. J. RUUTH

In [30], it was argued that operators which are composed of multiple Laplace–
Beltrami ∆S operators (or other high-order derivative terms) could be implemented
using multiple extension steps. Recalling that ∇4

S
u = ∆S(∆Su) and applying the

principles in Section 1

∇4
Su(x) = ∆S

(
∆(u(cp(x)))︸ ︷︷ ︸

v

)
= ∆

(
v(cp(x))

)
= ∆

([
∆(u(cp(x)))

]
︸ ︷︷ ︸

v

(cp(x))
)

for points x on the surface, that is, a closest point extension of the inner Laplacian
v is performed before computing the outer Laplacian. With ∆h as the discrete dif-
fusion operator from Section 2.2.2, we could consistently approximate the previous
expression using the matrix

M̃bi = ∆hE∆hE.

Similar to the case of the Laplace-Beltrami operator, the matrix −M̃bi has eigenvalues
with positive real components, leading to instability. A stable variant arises naturally
by using the procedure from Section 2.2.3. Specifically, this leads to the matrix

Mbi = stab(∆h, E) stab(∆h, E) = MM,

which in turn gives rise to the ODE system

∂

∂t
u = −Mbiu. (5.2)

Note that this is a “one-line” change in computer code for the in-surface heat equation,
requiring only the squaring of the M matrix.

5.1. Numerical convergence studies. The convergence of the implicit Closest
Point Method for biharmonic problems is tested on the two problems of Section 4.1,
where here the exact solutions are u(t, θ) = e−t cos(θ) + e−81t cos(3θ) and u(t, θ, φ) =
20
3π

∑∞

l=1 e−l2/9e−tl2(l+1)2Yll(θ, φ). The 2D problem is solved until t = 0.5 and the
3D problem is solved until t = 0.15. Figure 5.1 demonstrates that the Closest Point
Method achieves the expected accuracy using both second-order and fourth-order
finite differences, although the error appears to stagnate at around 10−7. Note that the
entries in the Mbi matrix are each multiplied by 1/∆x4. Heuristically, the stagnating
error appears to be consistent with rounding errors that are magnified by about 1/∆x4

with ∆x ≈ 10−2.
Our experiments demonstrate that the implicit Closest Point Method gives a

viable and extremely simple way to treat problems with biharmonic terms, although
for highly accurate results some attention should be paid to the control of roundoff
error. In the following section, we apply the technique to a fourth-order problem of
interface motion.

5.2. “Surface diffusion” on a surface. In the “surface diffusion” problem,
“atoms [on an interface] diffuse from areas of high mean curvature to low mean cur-
vature” [34]. In the standard settings of R

2 and R
3, the interface moves at a speed

proportional to the intrinsic Laplacian of its curvature. Here, we are interested in
the corresponding motion of an interface (defined by the zero contour of the function
u) on a curved surface S: the term “surface diffusion” is somewhat misleading in
this case because the diffusion is occurring on the interface (which in turn lies on the
surface S).

THE IMPLICIT CLOSEST POINT METHOD 17

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

‖
e
r
r
o
r
‖
∞

2 nd

-order

N

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

(a) Circle, 2nd-order

10
0

10
1

10
2

10
−9

10
−7

10
−5

10
−3

10
−1

‖
e
r
r
o
r
‖
∞

2 nd
-order

4 th

-order

N

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

(b) Circle, 4th-order

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

‖
e
r
r
o
r
‖
∞

2 nd

-order

4 th

-ord
er

N

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

(c) Sphere, 4th-order

Fig. 5.1: Biharmonic numerical convergence studies using the operator Mbi with
second-order finite differences (and BDF2 time stepping) and fourth-order finite dif-
ferences (and BDF4 time stepping). The calculations on circles use ∆t = 1

4∆x and
the calculations on the sphere use ∆t = 1

8∆x. Note N = 1
∆x .

A level set formulation of this problem is given by the fourth-order nonlinear
surface PDE

ut = −KS(u) = −∆Iκ|∇Su|,

where κ = ∇S · (∇Su/|∇Su|) is the in-surface curvature of the local level set of u. The
Laplacian ∆I operator is the in-surface analogue of the “surface Laplacian” operator
in [34]. Smereka [34] presented a simple and effective splitting

ut = −β∇4
Su + β∇4

Su − KS(u),

from which a semi-discretization in time using IMEX Euler is

un+1 − un

∆t
= −β∇4

Sun+1 + β∇4
Sun − KS(un) + O(∆t).

Notice this is linear in un+1 because the fourth-order KS(u) is treated explicitly. A
full discretization follows using the discrete Mbi operator

[
I + ∆tβMbi

] (
u

n+1 − u
n
)

= −∆tKh(un),

where Kh is a discrete form of KS obtained using the explicit Closest Point Method.
That is, the term Kh(un) is formed by first computing κ, the mean curvature of
u

n, in the embedding space R
d. This computation is followed by a closest point

extension of κ. Finally, ∆Iκ is computed by following the procedure in [34, 32]. This
explicit computation is performed only locally near the interface. We use β = 1

2 as is
recommended in [34].

Figure 5.2 shows two example computations. Our goal here is to demonstrate the
effectiveness of the implicit Closest Point Method on this problem and we have not
implemented the full algorithm of [34]. Specifically, some care must be taken when
dealing with merging of interfaces. Finally, for simplicity, we have not implemented
the local (to the interface) level set approach of [32].

6. Odd-order terms. So far, this paper has concentrated on Laplacian–Beltrami
and in-surface biharmonic operators. However, the Closest Point Method can also be
applied to odd-order terms. We outline a brief description of a possible approach,
based on discretizing the surface divergence of a vector field intrinsic to the surface.

18 C. B. MACDONALD AND S. J. RUUTH

(a)

(b)

Fig. 5.2: “Surface diffusion” of interfaces on surfaces. Top row (a): an initial interface
on a unit sphere evolves toward a circular steady state (from left-to-right: t = 0,
t = 3∆t, t = 9∆t, t = 18∆t with p = 3, ∆x = 0.1 and ∆t = 100∆x4). Bottom
row (b): interface evolving on a bumpy sphere [1] (left-to-right: t = 0, t = 3∆t,
t = 6∆t and t = 50∆t with p = 3, ∆x = 0.05, ∆t = 50∆x4).

6.1. Surface divergence terms. Consider a vector field w(x) : S → R
d in-

trinsic to the surface S, that is, any vector in w is tangent to S. Now define the
vector field v : R

d → R
d as the closest point extension of the vector field w, i.e.,

v(x) := w(cp(x)). It follows that v(x) satisfies the requirements of Principle 2 and
thus

∇S · w = ∇ · [w(cp(x))], for points x on the surface S.

We discretize in a similar fashion to Section 2.2. Let wi be a list of length m consisting
of the ith component of the vector field w evaluated at each of the grid points in the
list L. The closest point extension of each component of the vector field can then be
approximated using the extension matrix E. Combining this with a discretization of
the divergence operator gives

∇S · (w) ≈ Dx1
Ew1 + Dx2

Ew2 + . . . + Dxd
Ewd, (6.1)

where Dxi
is an m × (m + mg) matrix representing a finite difference approximation

to the derivative in the xi direction (the matrices Dxi
are analogous to the matrix ∆h

in Section 2.2.2).
Another consistent (and potentially more stable) discretization is obtained using

the splitting function stab(·, ·) given in Section 2.2.3. This yields

∇S · w ≈ stab(Dx1
, E)w1 + stab(Dx2

, E)w2 + . . . + stab(Dxd
, E)wd,

= Mx1
w1 + Mx2

w2 + . . . + Mxd
wd, (6.2)

where the m × m matrices Mxi
= stab(Dx1

, E) approximate the differential terms of
the surface divergence operator. Note that the forms (6.1) and (6.2) are identical if a
central difference discretization is chosen since Dxi

has zeros along the main diagonal.

THE IMPLICIT CLOSEST POINT METHOD 19

6.2. Third-order terms. For a given vector field w, suppose we want to form

∆S(∇S · w),

where w : S → R
d is a vector field defined on the surface and tangent to the surface.

As in the biharmonic case in Section 5, we perform two closest point extensions.
However, here we make use of Principles 1 and 2 to obtain

∆S(∇S · w) = ∆S

(
∇ · (w(cp(x)))︸ ︷︷ ︸

u

)
= ∆

(
u(cp(x))

)
= ∆

([
∇ · (w(cp(x)))

]
︸ ︷︷ ︸

u

(cp(x))
)
,

for points x on the surface S. Applying the discretizations (2.8) and (6.2) yields

∆S(∇S · w) ≈ stab(∆h, E)
(
stab(Dx1

, E)w1 + . . . + stab(Dxd
, E)wd

)
,

= (MMx1
)w1 + (MMx2

)w2 + . . . + (MMxd
)wd. (6.3)

Preliminary tests on the linear advection equation show the approach (6.2) is
both consistent and stable. We leave to future work the testing and application of
the method to third-order surface PDEs.

7. Conclusions and future work. This paper presents an implicit Closest
Point method for solving surface PDEs. The method introduces one or more ma-
trices into the discretization to carry out the interpolation steps that are central to
the Closest Point Method. For the important Laplace–Beltrami and in-surface bihar-
monic operators we have shown that a stable variant of the algorithm is achieved by
introducing the closest point operator into off-diagonal terms only. The corresponding
discretization is simple and has the property that computations can be carried out in a
small band near the surface with no loss of accuracy whatsoever. The discretization of
the in-surface biharmonic operator is obtained trivially, by squaring the discretization
of the Laplace–Beltrami operator. The power and flexibility of the implicit Closest
Point Method is illustrated for a number of examples including in-surface heat flow,
reaction-diffusion equations, and higher-order motions. Our experiments are carried
out on a variety of interesting surfaces, including triangulated surfaces and surfaces
of mixed codimension.

Our approach generalizes in a straightforward fashion to other operators, includ-
ing odd-order operators and nonlinear operators [22], and we intend to investigate
this further. Efficient methods for iteratively solving the implicit equations will be
another focus of our studies.

Appendix A. Constructing the computational band. This appendix gives
one possible algorithm to construct the band of grid points L enveloping the surface S
and the band of ghost points G. The algorithm is related to the “stencil set approach”
in [23] and differs mainly in that for the implicit Closest Point Method we need to
store the indices and weights associated with differentiation and extension in order to
build the matrices ∆h and E.

The algorithm proceeds in two passes. In the first pass, we build the list L of
all grid points needed for the closest point extension; these are exactly the points on
which the approximate solution will be propagated. This pass also identifies special
base points b ∈ L which are grid points that appear in the lower-left corner of an inter-
polation stencil (e.g., the lower-left grid points in the shaded regions in Figure 2.1).
Each of these base points b stores the corresponding interpolation stencil as a list
Sinterp(b) of indices pointing into the list L.

20 C. B. MACDONALD AND S. J. RUUTH

The second pass adds the list G of ghost points; these grid points appear in an
differentiation stencil but not in any of the interpolation stencils. Each point x in
L∪G stores cp(x), its closest point on S, and the index (pointing into L) of the base
point b of its interpolation stencil. Points x in L also store their differentiation stencil
as a list Sdiff(x) of indices pointing into L and G.

Algorithm 1 implements the two passes. Given the computational band, Algo-
rithm 2 constructs the ∆h and E matrices.

Algorithm 1: Building L and G

// First Pass

Add any one grid point near S to L;
repeat

Get next element x from L;
foreach point y in the differentiation stencil for the point x do

Calculate cp(y);
Find b the base point of the interpolation stencil for cp(y);
if b not yet processed then

Let Sinterp(b) = ∅;

foreach z in the interpolation stencil for cp(y) do
Look for z in L, note its index if found;
If z is not found, add it to L and note its index;
Add the index of z to Sinterp(b);

until no more elements in L ;

// Second Pass

foreach x in L do
Set Sdiff(x) = ∅;

foreach y in the differentiation stencil for the point x do
Find the index in L of the base point b corresponding to cp(y). Associate this
index and the value of cp(y) with y;
Look for y in L and G, note its index if found;
If not found, add it to G and note its index;
Add the index of y (and which band it is in) to Sdiff(x);

Algorithm 2: Forming the ∆h and E matrices

foreach index i where xi ∈ L do

foreach j ∈ Sdiff(xi)
, the differentiation stencil for xi do

Set [∆h]i,j to the weight for the jth component of the differentiation stencil;

foreach index i where xi ∈ L ∪ G do
Retrieve the base point b for xi, and cp(xi);
Compute weights wcp(xi) with barycentric Lagrange interpolation;
foreach index j in the interpolation Sinterp(b) do

Set [E]i,j = w
cp(xi)
j (the weight corresponding to the jth component of the

interpolation stencil Sinterp(b));

REFERENCES

[1] AIM@SHAPE, “Bumpy Sphere” from the AIM@SHAPE shape repository. http://shapes.

aimatshape.net, 2008. Accessed 2008-08-13.
[2] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge–Kutta methods for

time-dependent partial differential equations, Appl. Numer. Math., 25 (1997), pp. 151–167.
[3] U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-

dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 797–823.

THE IMPLICIT CLOSEST POINT METHOD 21

[4] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46
(2004), pp. 501–517.

[5] M. Bertalḿıo, A. Bertozzi, and G. Sapiro, Navier–Stokes, fluid dynamics, and image and

video inpainting, Proc. of IEEE-CVPR, (2001), pp. 355–362.
[6] M. Bertalḿıo, L.-T. Cheng, S. Osher, and G. Sapiro, Variational problems and partial

differential equations on implicit surfaces, J. Comput. Phys., 174 (2001), pp. 759–780.
[7] M. Burger, Finite element approximation of elliptic partial differential equations on implicit

surfaces, CAM Report 05-46, UCLA, 2005.
[8] L.-T. Cheng, P. Burchard, B. Merriman, and S. Osher, Motion of curves constrained on

surfaces using a level-set approach, J. Comput. Phys., 175 (2002), pp. 604–644.
[9] G. Dziuk and C. Elliott, Surface finite elements for parabolic equations, J. Comp. Math.,

25 (2007), pp. 385–407.
[10] , Eulerian finite element method for parabolic PDEs on implicit surfaces, Interf. Free

Bound., 10 (2008), pp. 119–138.
[11] M. Floater and K. Hormann, Surface parameterization: a tutorial and survey, in Advances

in Multiresolution for Geometric Modelling, Springer, 2005.
[12] C. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall,

1971.
[13] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.
[14] J. B. Greer, An improvement of a recent Eulerian method for solving PDEs on general ge-

ometries, J. Sci. Comput., 29 (2006), pp. 321–352.
[15] J. B. Greer, A. L. Bertozzi, and G. Sapiro, Fourth order partial differential equations on

general geometries, J. Comput. Phys., 216 (2006), pp. 216–246.
[16] X. Gu, Y. Wang, T. Chan, P. Thompson, and S. Yau, Genus zero surface conformal mapping

and its application to brain surface mapping, Medical Imaging, IEEE Transactions on, 23
(2004), pp. 949–958.

[17] E. Hairer and G. Wanner, Solving ordinary differential equations. II: Stiff and differential-

algebraic problems, Springer-Verlag, second ed., 1996.
[18] M. Holst, Adaptive numerical treatment of elliptic systems on manifolds, in Advances in

Computational Mathematics, 2001, pp. 139–191.
[19] A. Hui, “Annie Hui’s pig”, the AIM@SHAPE shape repository. http://shapes.aimatshape.

net, 2008. Accessed 2008-04-09.
[20] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python.

http://www.scipy.org, 2001. Accessed 2008-07-15.
[21] D. I. Ketcheson, C. B. Macdonald, and S. Gottlieb, Optimal implicit strong stabil-

ity preserving Runge–Kutta methods, Appl. Numer. Math., 59 (2009), pp. 373–392.
doi:10.1016/j.apnum.2008.03.034.

[22] C. B. Macdonald, The Closest Point Method for time-dependent processes on surfaces, PhD
thesis, Simon Fraser University, August 2008.

[23] C. B. Macdonald and S. J. Ruuth, Level set equations on surfaces via the Closest Point

Method, J. Sci. Comput., 35 (2008), pp. 219–240. doi:10.1007/s10915-008-9196-6.
[24] J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Springer,

third ed., 2003.
[25] O. Nemitz, M. Nielsen, M. Rumpf, and R. Whitaker, Finite element methods on very large,

dynamic tubular grid encoded implicit surfaces, SIAM J. Sci. Comput., (submitted).
[26] T. E. Oliphant, Python for scientific computing, Computing in Science & Engineering, 9

(2007), pp. 10–20.
[27] L. Olsen, P. Maini, and J. Sherratt, Spatially varying equilibria of mechanical models:

Application to dermal wound contraction, Math. Biosci., 147 (1998), pp. 113–129.
[28] I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems. II, The

Journal of Chemical Physics, 48 (1968), pp. 1695–1700.
[29] S. J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation, J.

Math. Bio., 34 (1995), pp. 148–176.
[30] S. J. Ruuth and B. Merriman, A simple embedding method for solving partial differential

equations on surfaces, J. Comput. Phys., 227 (2008), pp. 1943–1961.
[31] L. Saboret, M. Attene, and P. Alliez, “Laurent’s Hand”, the AIM@SHAPE shape reposi-

tory. http://shapes.aimatshape.net, 2007. Accessed 2007-02-16.
[32] D. Salac and W. Lu, A local semi-implicit level-set method for interface motion, J. Sci.

Comput., 35 (2008), pp. 330–349.
[33] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit: an object-oriented

approach to 3D graphics, Prentice Hall, 1998.
[34] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion, J.

22 C. B. MACDONALD AND S. J. RUUTH

Sci. Comput., 19 (2003), pp. 439–455.
[35] J. Stam, Flows on surfaces of arbitrary topology, ACM Trans. Graph., 22 (2003), pp. 724–731.
[36] P. Tang, F. Qiu, H. Zhang, and Y. Yang, Phase separation patterns for diblock copolymers

on spherical surfaces: A finite volume method, Phys. Rev. E, 72 (2005), p. 016710.
[37] L. Tian, C. B. Macdonald, and S. J. Ruuth, Segmentation on surfaces with the Closest

Point Method, in Proc. ICIP09, International Conference on Image Processing (to appear),
Cairo, Egypt, 2009.

[38] L. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.
[39] A. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond., B237 (1952),

pp. 37–72.
[40] G. Turk, Generating textures on arbitrary surfaces using reaction-diffusion, Computer Graph-

ics, 25 (1991), pp. 289–298.
[41] G. Turk and M. Levoy, The Stanford Bunny, the Stanford 3D scanning repository. http:

//www-graphics.stanford.edu/data/3Dscanrep, 1994. Accessed 2008-06-18.
[42] G. van Rossum et al., The Python programming language. http://www.python.org, 1991.

Accessed 2008-07-15.
[43] L. Yang, A. M. Zhabotinsky, and I. R. Epstein, Stable squares and other oscillatory Turing

patterns in a reaction-diffusion model, Phys. Rev. Lett., 92 (2004), pp. 198–303.

