
Level set equations on surfaces via the Closest

Point Method

Colin B. Macdonald1⋆, Steven J. Ruuth2⋆⋆

1 Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A1S6
Canada. e-mail: cbm@sfu.ca

2 Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A1S6
Canada. e-mail: sruuth@sfu.ca

Preprint: 5 February 2008

Abstract Level set methods have been used in a great number of appli-
cations in R

2 and R
3 and it is natural to consider extending some of these

methods to problems defined on surfaces embedded in R
3 or higher dimen-

sions. In this paper we consider the treatment of level set equations on sur-
faces via a recent technique for solving partial differential equations (PDEs)
on surfaces, the Closest Point Method [18]. Our main modification is to in-
troduce a Weighted Essentially Non-Oscillatory (WENO) interpolation step
into the Closest Point Method. This, in combination with standard WENO
for Hamilton–Jacobi equations, gives high-order results (up to fifth-order)
on a variety of smooth test problems including passive transport, normal
flow and redistancing. The algorithms we propose are straightforward mod-
ifications of standard codes, are carried out in the embedding space in a
well-defined band around the surface and retain the robustness of the level
set method with respect to the self-intersection of interfaces. Numerous ex-
amples are provided to illustrate the flexibility of the method with respect
to geometry.

Key words Closest Point Method – level set methods – partial differential
equations – implicit surfaces – WENO schemes – WENO interpolation

⋆ The work of this author was partially supported by a grant from NSERC
Canada and a scholarship from the Pacific Institute for the Mathematical Sciences
(PIMS).
⋆⋆ The work of this author was partially supported by a grant from NSERC
Canada.

2 Colin B. Macdonald, Steven J. Ruuth

1 Introduction

The level set method [15] has been successfully applied to a tremendous
variety of problems involving curve evolution in R

2 or surface evolution in
R

3. This curve or surface—the interface—is represented as the zero contour
of a level set function φ. A principal strength of the level set method comes
from its ability to handle changes in topology of the evolving interface, i.e.,
interfaces break apart or merge naturally, and without the need for special
code or instructions to detect or treat the shape changes as they occur. A
second, and also key, benefit that occurs when using level set methods is
that the discretization of the underlying level set equation (of Hamilton–
Jacobi type) can be carried out using well-known, accurate and reliable
discretization techniques, such as the weighted essentially non-oscillatory
(WENO) methods described in [10,8,7]. Taken together, these benefits have
contributed to a widespread adoption of level set techniques in different
disciplines [14,21].

Level set methods have primarily been used to treat evolving interfaces
in R

2 and R
3. It is natural to want to evolve level set equations on general

domains, to give a way of robustly capturing the motion of interfaces on
curved surfaces. Such an extension would be extremely interesting since it
could open up the possibility of generalizing existing level set applications
to curved surfaces. For example, suppose one wished to segment out objects
appearing on a surface. By extending level set methods to surfaces, we gain
the possibility of solving this problem by simply transferring existing level
set methods for segmentation to the case of surfaces. This approach becomes
even more compelling if the algorithms for surface flows end up being based
on existing codes for standard two- and three-dimensional flows. Indeed, we
shall see this is the case with the Closest Point Method.

An interesting method for evolving interfaces on surfaces was proposed
by Cheng et al. [2]. In their approach, a level set representation of the
underlying surface was taken, with the evolving interface being represented
by the intersection of two level set functions. The level set evolution equation
for φ made use of standard gradients followed by projections to the surface
rather than using the surface gradients that would otherwise appear in a
surface PDE. Thus, the method evolved a level set PDE in R

3, and, at any
time, gave the position of the interface on the surface as the zero contour
of φ on the surface. See [2] for further details on the method as well as a
fascinating selection of examples using the method.

An alternative way of developing a method to evolve interfaces on sur-
faces is to start from a level set equation defined on a surface, e.g., a
Hamilton–Jacobi equation of the form

φt + H(t, x, φ,∇Sφ) = 0, (1a)

φ(0, x) = φ0(x), (1b)

or some curvature-dependent generalization of this, and to solve it with
some existing strategy for evolving PDEs on surfaces. For example, one

Level set equations on surfaces via the Closest Point Method 3

might apply the method of Bertalmı́o et al. [1] or Greer [6] to treat the
surface PDE. These methods use a level set representation of the surface
and replace surface gradients by standard gradients and projection operators
in R

3 to get an embedding PDE which is defined throughout time and space
and agrees with the surface evolution on the surface. This leads to similar or
the same PDEs as those appearing in [2], and will therefore be very similar
in character to the methods described there.

In this paper, we will evolve the level set equations of Hamilton–Jacobi
type (1) according to the recently proposed Closest Point Method [18].
The Closest Point Method has a number of properties that make it quite
attractive for solving level set equations on surfaces. First of all, it takes
the underlying surface representation to be a closest point representation.
This allows it to treat PDEs on surfaces that have boundaries, lack any
clearly defined inside/outside or are of arbitrary codimension. Similar to
level set based methods, the method uses an embedding PDE defined in the
embedding space (e.g., R

3). The meaning and use of the embedding PDE is
fundamentally different, however, since it is only valid initially, and therefore
requires an extension step to ensure its accuracy. A desirable property of
the Closest Point Method is that it works on sharply defined bands around
the surface of interest without any loss of accuracy whatsoever. Finally, we
note that the method, in its explicit form, leads to embedding PDEs which
are simply the PDEs of the corresponding flow in the embedding space.
This last advantage means that with the insertion of a simple extension
step we can reuse highly effective three-dimensional level set codes without
any other modifications to obtain the motion of level sets on surfaces. Note
that this paper does not consider curvature-driven flows; such motions have
been treated successfully using the Closest Point Method with a central
difference spatial discretization in [18].

A crucial step in applying the Closest Point Method to solve level set
equations on surfaces is to design an appropriate extension step. This paper
considers a new extension based on a WENO interpolation which is sixth
order in smooth regions and formally fourth order elsewhere. Our approach
has all the practical advantages of the Closest Point Method: flexibility
when selecting a surface, efficiency with respect to banding and extreme
simplicity of implementation. We emphasize that while our new extension
procedure will be used here for Hamilton–Jacobi equations, it also could
be valuable for treating much more general PDEs if high-order accuracy is
desired but the PDE or the underlying surface is somewhere nonsmooth or
marginally resolved.

The paper unfolds as follows. Section 2 reviews the Closest Point Method,
and includes details on the closest point representation and the method it-
self. Section 3 gives our new interpolation technique, a technique inspired by
previous WENO methods. This section includes details on situations where
WENO interpolation will be preferred over standard fixed-stencil Lagrange
interpolation. Section 4 provides the numerical experiments. A focus is on
numerical convergence, and we carry out a number of studies that show

4 Colin B. Macdonald, Steven J. Ruuth

high-order accurate flows (up to fifth-order) for passive transport, normal
flows, and the reinitialization PDE. A normal flow computation is performed
on a non-trivial triangulated surface, illustrating that the method is in no
way restricted to simple surfaces. We conclude by carrying out a standard
level set calculation on a codimension-two hypersurface in 4D, the Klein
bottle. This example highlights the method’s ability to treat interesting
surfaces without any inside/outside property. Finally Section 5 gives the
paper’s conclusions, and lists some areas for future work.

2 The Closest Point Method

The Closest Point Method [18] is a general technique for solving partial
differential equations and other processes on surfaces. This section reviews
the method and some of its key features. We begin with a discussion on how
the method represents surfaces before describing the algorithm itself.

2.1 Closest Point Representation of Surfaces

The Closest Point Method for evolving PDEs on surfaces relies on a closest
point representation of the underlying surface. Let the surface be embedded
in R

n then we introduce the closest point operator cp : R
n → R

n such that
given a point x, cp(x) is a point on the surface closest in Euclidean distance
to x. If x is in a sufficiently small neighborhood of a smooth surface, then
it will have a unique closest point, however, in general if there are multiple
closest points to x, then we define cp(x) to return an arbitrarily chosen
closest point. For example, if the surface is a circle of radius R centred

at the origin embedded in R
2 then cp(〈x, y〉) =

〈

Rx
x2+y2 , Ry

x2+y2

〉

provided

〈x, y〉 6= 〈0, 0〉. The origin is closest to any point on the circle so we define
cp(〈0, 0〉) to be some arbitrary point on the circle.

Because the Closest Point Method uses a closest point representation, a
representation which is defined throughout the embedding space, it belongs
to the class of embedding methods. Some other embedding methods for
surface PDEs (e.g. [2,6]) make use of level set representations of the under-
lying surface. Note that the closest point representation has the advantage
of not requiring a notion of “inside/outside” allowing the straightforward
representation of surfaces with boundaries or non-orientable surfaces (e.g.,
a Möbius strip). Surfaces of codimension-two or higher such as the Klein
bottle in 4D (Section 4.6) or a filament in 3D can also be represented with-
out additional complication. Thus, an important feature of the closest point
representation is that it does not inherently impose any limitations on the
geometry or dimension of surfaces that can be represented.

Level set equations on surfaces via the Closest Point Method 5

2.2 Equivalence of Gradients

Besides the obvious flexibility they give for representing general surfaces,
closest point representations have the advantage of giving us a means to
extend quantities φ defined on the surface to the rest of space via φ(cp(x)).
Such closest point extensions result in functions which are constant in the
direction normal to the surface, at least within a neighborhood of the sur-
face. This is important because it leads to simplified derivative calculations
in the embedding space [18]. To proceed, let ∇S denote the gradient intrinsic
to the surface S. Then, at the surface, ∇φ(cp(x)) = ∇Sφ since the function
φ(cp(x)) is constant in the normal direction and therefore only varies along
the surface. In other words, at points on the surface, surface gradients are
the same as standard Cartesian gradients of φ(cp(x)). This will be all that
we need to derive the embedding PDEs used in the examples appearing in
this paper.

A second principle also holds [18]. For this, let ∇S · denote the divergence
operator intrinsic to the surface S and let v be any vector field on R

3 that is
tangent at S, and also tangent at all surfaces displaced by a fixed distance
from S (i.e., all surfaces defined as level sets of the distance function to S).
Then at the surface ∇ · v = ∇S · v. Combinations of this and the gradient
property may be made, to allow for very general motion laws for second-
order operators, including the level set equation for curvature motion and
other nonlinear diffusion operators [18]. Indeed, even higher-order and more
general derivative replacements may be considered by carrying out multiple
closest point extensions [18], although this has not yet been tried in practice.

To help illustrate these ideas we provide two simple examples on a circle
of radius R.

Example 1 Consider the surface gradient, expressed in polar coordinates
∇Sφ = 0er + ∂φ

∂s
eθ, where s is the arc length. We have s = Rθ, therefore

∂φ
∂s

= 1
R

φθ and

∇Sφ =
1

R
φθeθ.

Now ∇φ(cp(x)) = φr(cp(x))er + 1
r
φθ(cp(x))eθ. As noted earlier, φ(cp(x))

is constant in the direction normal to the surface which in this case is the
radial direction, so φr(cp(x)) = 0. Thus, for points x on the surface

∇φ(cp(x)) =
1

R
φθ(cp(x))eθ =

1

R
φθ(x)eθ = ∇Sφ(x).

Example 2 Consider, in polar coordinates, the surface Laplace-Beltrami
operator ∇2

Sφ = φss = 1
R2 φθθ and the Laplacian operator ∇2φ(cp(x)) =

φrr(cp(x))+ 1
r
φr(cp(x))+ 1

r2 φθθ(cp(x)). Again, φ(cp(x)) is constant in the
radial r-direction so both radial derivatives are zero, and for x on the surface

∇2φ(cp(x)) =
1

R2
φθθ(x) = ∇2

Sφ(x).

6 Colin B. Macdonald, Steven J. Ruuth

2.3 The Algorithm

Having determined a way of evaluating gradients and other derivatives in the
embedding space, we are now in a position to give the Closest Point Method.
Central to this task is to determine a PDE, defined in the embedding space,
to generate the flow corresponding to the surface PDE. Suppose that our
surface PDE takes the form

φt = F

(

t, x, φ,∇Sφ,∇S ·
(∇Sφ

|∇Sφ|

))

, (2a)

φ(0, x) = φ0(x). (2b)

More general PDEs can be treated directly by the Closest Point Method,
but this form includes many of the second-order flows that arise in geo-
metric interface motion [21,14]. Based on the principles described in our
previous subsection, and originally given in [18], we may replace the gradi-
ents and divergence operators by the standard Cartesian derivatives in the
embedding space, according to

φt = F

(

t, cp(x), φ(cp(x)),∇φ(cp(x)),∇ ·
(∇φ(cp(x))

|∇φ(cp(x))|

))

, (3a)

φ(0, x) = φ0(cp(x)), (3b)

and the solutions of (2) and (3) will agree at the surface.
Notice that if we start from a φ(0, x) which comes from a closest point

extension (as we do here in (3b)), then the right hand side of (3) and the
embedding PDE

φt = F

(

t, cp(x), φ,∇φ,∇ ·
(∇φ

|∇φ|

))

, (4a)

φ(0, x) = φ0(x), (4b)

agree initially (although not for later times). This suggests a way of explic-
itly treating (3) efficiently: starting from a closest point extension of the
solution at time-step tn, take one forward Euler step (or stage of a higher-
order explicit Runge–Kutta scheme) of (4) to advance in time to φ̃n+1.
After this evolution step φ̃n+1 will not be constant in a direction normal to
the surface. To regain this property, we perform a closest point extension of
φ̃n+1 according to φn+1(x) = φ̃n+1(cp(x)). This gives us an update which
is constant in the direction normal to the surface, ensuring once again that
(4) will initially agree with (3) and hence with the original surface PDE
(2). We can then repeat the process of alternating between time-stepping
(4) and performing closest point extensions to obtain the solution at the
desired time.

The semi-discrete (discrete in time, continuous in space) Closest Point
Method with forward Euler time-stepping is thus:

1. Find the embedding PDE (4) corresponding to the surface PDE (2).

Level set equations on surfaces via the Closest Point Method 7

S
x1

ld
q1

× ×

××

x2ld
q2

×

× ×

×

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b grid points
ld interpolation point

× × interpolation kernel

Fig. 1: Closest point extensions for grid points x1 and x2 where q1 = cp(x1) and
q2 = cp(x2). In this case, low-order bilinear interpolation is used to estimate a
value for φ(qi) = φ(cp(xi)) from a stencil of the four neighboring grid points to
qi.

2. Extend the initial conditions off the surface out into the surrounding
domain to each point x, i.e., φ0(x) = φ0(cp(x)).

At time tn perform the following steps to advance to time tn+1:

3. Perform a forward Euler time-step

φ̃n+1 = φn + ∆tF

(

tn, cp(x), φn,∇φn,∇ ·
(∇φn

|∇φn|

))

.

4. Perform a closest point extension for each point x

φn+1(x) = φ̃n+1(cp(x)).

For higher-order explicit Runge–Kutta methods, we employ a closest point
extension following each stage of the Runge–Kutta scheme.

There is great flexibility available in choosing the spatial discretization.
Similar to [18] we will select a finite difference method on a banded, but
regular, Cartesian mesh. We will henceforth assume that the computation
is carried out on a regular Cartesian mesh, noting that spectral methods
have also been used to solve the embedding PDE; see [12] for details.

The closest point extension is an interpolation step because, although
x is a grid point in a regular Cartesian grid, cp(x) likely will not be. This
is illustrated in Figure 1 where bilinear interpolation is used to estimate a
value for φ(cp(x)) from a stencil of the four neighboring grid points. Clearly
one could use a larger interpolation stencil to increase the accuracy of the
interpolation, and this is precisely the focus of Section 3 where we construct
a smooth high-order interpolation using dynamic stencils.

We conclude this section with a few observations about the Closest Point
Method:

– The evolution step of the Closest Point Method (step 3 above) is done us-
ing standard methods in the embedding space. Moreover the embedding

8 Colin B. Macdonald, Steven J. Ruuth

PDE does not involve any projections or other surface-specific modifi-
cations; it is simply the standard PDE in the embedding space. This
is very convenient since it implies that standard, well-understood algo-
rithms in R

3 can be straightforwardly modified to accommodate surface
flows. Indeed, this is exactly the approach we take in Section 4 where
we reuse standard Hamilton–Jacobi algorithms.

– The Closest Point Method uses a closest point representation for the
surface. As discussed earlier in this section, this has the advantage of
allowing the treatment of arbitrary surfaces of varying codimension, with
boundaries, or even without orientation.

– The method does not introduce any artificial boundaries at the edge
of the computational band to carry out banded calculations near the
surface. The method merely computes on a band which is wide enough
so that all values in the interpolation stencil have been accurately evolved
(see Section 4.1). As a general principle, artificial boundaries should be
avoided since they can lead to a degradation of accuracy even in simple
diffusive problems [6].

– Finally, we remark that the use and meaning of the embedding PDE
is fundamentally different for the level set methods for PDEs on sur-
faces and Closest Point Method. In a level set approach the embedding
PDE gives the solution at the surface for all times. In the Closest Point
Method the embedding PDE only gives a valid evolution initially and
for one explicit time-step (or stage in a Runge–Kutta method). Thus the
extension step is necessary to ensure the consistency of the algorithm.

For further details on the Closest Point Method and on how it contrasts
with other methods and, in particular, other embedding methods we refer
to [18].

3 WENO Interpolation

Weighted Essentially Non-Oscillatory (WENO) spatial discretizations [10,8,
7,9] are well-studied and commonly used for the evolution of PDEs with dis-
continuous or non-smooth solutions. We will make use of standard WENO
discretizations in Section 4 for the evolution step of the Closest Point
Method. However, the second part of the Closest Point Method—the ex-
tension step—requires an interpolation scheme to approximate φ(cp(x))
from grid points near the surface. We expect that fixed-stencil Lagrange
interpolation may encounter difficulties from either non-smooth φ or from
non-smooth or poorly resolved surfaces. In this Section we derive a WENO-
based interpolation in one dimension and in multiple dimensions. This is
followed by some numerical experiments which illustrate that WENO in-
terpolation can give very good results even when fixed-stencil Lagrange
interpolation fails or gives undesirable results.

WENO interpolation was considered in [20] to interpolate between sub-
domains of a multidomain WENO finite difference calculation for hyperbolic

Level set equations on surfaces via the Closest Point Method 9

b b b b b b

xi−2 xi−1 xi xi+1 xi+2 xi+3

ld
x

| {z }

S1

S2
z }| {

| {z }

S3

Fig. 2: The one dimensional interpolation grid, where x ∈ [xi, xi+1) and three
candidate stencils S1, S2 and S3.

conservation laws. However, in [20] one of the candidate stencils corresponds
to an extrapolation rather than an interpolation (see Fig. 2 of [20]). In this
work we derive and study new WENO interpolation schemes in which all
candidate polynomials are interpolants. The question of whether improved
results can be obtained by allowing some extrapolation in the candidate
polynomials will be addressed in future studies.

3.1 One-dimensional WENO interpolation

Consider the 1D interpolation problem (Figure 2): given the six points xi−2,
xi−1, xi, xi+1, xi+2, xi+3, corresponding data fi−2, fi−1, fi, fi+1, fi+2, fi+3

and a value of x ∈ [xi, xi+1), we want to estimate f(x).

We being with three candidate interpolants

p1(x) = fi−2 + fi−1−fi−2

∆x
(x − xi−2) + fi−2fi−1+fi−2

2∆x2 (x − xi−2)(x − xi−1)

+ fi+1−3fi+3fi−1−fi−2

6∆x3 (x − xi−2)(x − xi−1)(x − xi),

p2(x) = fi−1 + fi−fi−1

∆x
(x − xi−1) + fi+1−2fi+fi−1

2∆x2 (x − xi−1)(x − xi)

+ fi+2−3fi+1+3fi−fi−1

6∆x3 (x − xi−1)(x − xi)(x − xi+1),

p3(x) = fi + fi+1−fi

∆x
(x − xi) + fi+2−2fi+1+fi

2∆x2 (x − xi)(x − xi+1)

+ fi+3−3fi+2+3fi+1−fi

6∆x3 (x − xi)(x − xi+1)(x − xi+2),

where each interpolant corresponds to the cubic polynomial fit to the data
given on one of the three candidate stencils S1 = {xi−2, . . . , xi+1}, S2 =
{xi−1, . . . , xi+2}, and S3 = {xi, . . . , xi+3} (see Figure 2). These interpolants
will be combined to give the WENO interpolant

IWENO6(x) = w1(x)p1(x) + w2(x)p2(x) + w3(x)p3(x),

where wi(x), i = 1, 2, 3 are the required weights (still to be determined). In a
smooth problem, all the point data should be used to obtain an interpolation
which is as high order as possible, i.e., that agrees with the degree five
interpolating polynomial through all six points. These “ideal” weights Ci,

10 Colin B. Macdonald, Steven J. Ruuth

i = 1, 2, 3 are given by

C1(x) =
(xi+2 − x)(xi+3 − x)

20∆x2
,

C2(x) =
(xi+3 − x)(x − xi−2)

10∆x2
,

C3(x) =
(x − xi−2)(x − xi−1)

20∆x2
.

Note that unlike WENO for hyperbolic conservation laws [10,8] and WENO
for Hamilton–Jacobi problems [7], here the interpolation point x is not fixed
and the values of the ideal weights depend on x. Still, these Ci(x) are com-
pletely analogous to the well-known “ 1

10 , 6
10 , 3

10” weights in those works.

In nonsmooth regions, at least one of the interpolations pi(x), i = 1, 2, 3
will be superior to an interpolation with the “ideal” values because of
the problems associated with fitting high-order polynomials to nonsmooth
data—namely highly oscillatory results. To decide which stencils to use, we
compute a smoothness indicator for each interpolant. We take the smooth-
ness indicator ISi for interpolant pi as “a sum of squares of scaled L2 norms
of all the derivatives of the [interpolant pi] over the interval [of interpola-
tion]” [22]. Specifically

ISi =
3

∑

j=1

∫ xi+1

xi

(∆x)2j−1

(

djpi(x)

dxj

)2

dx. (7)

If a particular interpolant exhibits rapid change on the interval (xi, xi+1)
compared to the other two interpolants, then it will have larger-in-magnitude
derivatives on that interval, which in turn increases the corresponding smooth-
ness indicator (7). Smooth interpolants—those that are desirable for use in
our interpolation—will exhibit less drastic changes in their derivatives and
thus minimize (7). If all three candidate interpolants are smooth, then all
three smoothness indicators will have similar (small) values. For complete-
ness, (7) can be worked out as

IS1 =
(

814f2
i+1 + 4326f2

i + 2976f2
i−1 + 244f2

i−2 − 3579fifi+1 − 6927fifi−1

+ 1854fifi−2 + 2634fi+1fi−1 − 683fi+1fi−2 − 1659fi−1fi−2

)

/180,

IS2 =
(

1986f2
i+1 + 1986f2

i + 244f2
i−1 + 244f2

i+2 + 1074fifi+2 − 3777fifi+1

− 1269fifi−1 + 1074fi+1fi−1 − 1269fi+2fi+1 − 293fi+2fi−1

)

/180,

IS3 =
(

814f2
i + 4326f2

i+1 + 2976f2
i+2 + 244f2

i+3 − 683fifi+3 + 2634fifi+2

− 3579fifi+1 − 6927fi+1fi+2 + 1854fi+1fi+3 − 1659fi+2fi+3

)

/180.

We note as expected that the smoothness indicators do not depend on the
particular point of interpolation x because they measure a property of the
interpolant candidates themselves.

Level set equations on surfaces via the Closest Point Method 11

1.2

1.4

1.6

1.8

2

2.2

2.4 IS
1
 = 0.0295

IS
2
 = 1.51

IS
3
 = 9.07

w
1
(x) = 0.999

w
2
(x) = 1.27e−3

w
3
(x) = 1.05e−5

data point
WENO interp.
Lagrange interp.

x

y

xi−2 xi−1 xi xi+1 xi+2 xi+3

Fig. 3 One-dimensional interpo-
lation example contrasting La-
grange and WENO interpolation
near a discontinuity.

The computation of the weights is carried out using the smoothness
indicators as in the standard WENO procedure by first calculating

αi(x) =
Ci(x)

(ε + ISi)2
, i = 1, 2, 3,

where ε is a small parameter to prevent division-by-zero in the case when
all ISi ≈ 0; we use ε = 1 × 10−6 in all our calculations. Finally, the weights
are

wi(x) =
αi(x)

α1(x) + α2(x) + α3(x)
, i = 1, 2, 3.

Appendix A constructs a formally fourth-order WENO interpolation
from two candidate quadratic interpolants using a similar approach to above.
Both of these WENO interpolation routines are constructed so that wher-
ever the ideal weights are chosen (i.e., wi(x) = Ci(x)), the results are iden-
tical to using fixed-stencil interpolating polynomials through all candidate
points. Therefore, in this case, they are also identical to the fixed-stencil
Lagrange interpolation procedure used in previous Closest Point Method
works [18,12]. In non-smooth problems, however, stencils corresponding to
smooth regions are automatically selected. Figure 3 shows one such exam-
ple, where a one-dimensional function is reconstructed using interpolation
in a cell adjacent to a discontinuity. Lagrange interpolation based on the
six data points gives a spurious oscillation in the cell of interest, since it
interpolates across the discontinuity. On the other hand, with WENO in-
terpolation the smoothness indicators IS2 and IS3 are very large resulting
in small weights w2 and w3 and thus the data from the rightmost two data
points give a negligible contribution to the interpolation. This leads to the
desired non-oscillatory result.

Another type of problem for which WENO based interpolation is ex-
pected to give superior results arises when the underlying surface is marginally
resolved by the grid or is nonsmooth. We investigate the former possibility
in Section 3.3.

12 Colin B. Macdonald, Steven J. Ruuth

b b b b b but

b b b b b but

b b b b b but

b b b b b but

b b b b b but

b b b b b but

ld

b grid point
ld 2D interp. point
ut 1D interp. point in x

Fig. 4: Using a 1D interpolation scheme to build a 2D interpolation routine. Sup-
pose we want to find a value at the point ♦ by interpolating the values at the
grid points •. We begin by performing multiple 1D interpolations in the horizontal
direction to obtain the values at the points △. We then do a final 1D interpolation
of the values at points △ to obtain a value at point ♦.

3.2 Higher-Dimensional WENO Interpolation

Higher-dimensional interpolation is built in the standard fashion from one-
dimensional interpolations. For example, two-dimensional sixth-order WENO
interpolation is carried out by first interpolating six times in the x-direction
to obtain six values which have x-coordinate values that agree with the
interpolation point. One-dimensional interpolation is then carried out on
these six points to get the desired interpolated value. See Figure 4 for an
illustration. Three and higher dimensions are treated in a similar dimension-
by-dimension manner.

3.3 WENO Interpolation and Marginally Resolved Surfaces

Even when the solution of the PDE is smooth, WENO interpolation can
offer superior results over fixed-stencil Lagrange interpolation when the un-
derlying surface is marginally resolved or otherwise nonsmooth. We demon-
strate the former situation by considering the reinitialization equation (see
Section 4.4) with sinusoidal initial conditions on the lines x = a and x = b,
i.e.,

φt + sgn(φ0) (|∇Sφ| − 1) = 0,

with

φ0(a, y) = sin(πy),

φ0(b, y) = cos(πy).

Thinking of the two lines as representing different parts of a surface embed-
ded in R

2, we may apply the Closest Point Method to compute approxima-
tions of the solution. Clearly, the underlying PDE and initial conditions give
a smooth flow. The problem becomes computationally interesting when the
two lines are separated by only a few cells. Such problems illustrate how the

Level set equations on surfaces via the Closest Point Method 13

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ
0
(a,y)

φ
0
(b,y)

y

(a) Initial conditions

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ(a,y)
φ(b,y)
exact

y

(b) Lagrange interpolation

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ(a,y)
φ(b,y)
exact

y

(c) WENO interpolation

Fig. 5: A comparison of Lagrange interpolation versus WENO interpolation on
closely spaced surfaces with b − a = 4∆x. This is a signed distance computation
(Section 4.4) with tf = 4 and periodic boundary conditions.

method treats a smooth PDE on a smooth but marginally resolved surface
and gives us insight into whether WENO interpolation can give superior
results to the standard Lagrange interpolation approach on marginally re-
solved surfaces.

Figure 5 shows the results when the lines are separated by four grid nodes
(in this example, b−a = 4∆x). Using standard WENO for Hamilton–Jacobi
equations in 2D for the evolution step (see Section 4) and Lagrange inter-
polation (based on degree five polynomials) for the closest point extension,
leads to an obviously incorrect solution with discontinuities and substantial
movement of the zero-contour. This error is due to the close proximity of the
lines resulting in the stencil using data from both lines, an approach which
is clearly nonlocal and incorrect. WENO interpolation, however, chooses
stencils based on smoothness and hence avoids using data from the more
distant line. This leads to a non-oscillatory numerical approximation that is
in excellent agreement with the exact result. It turns out via a straightfor-
ward examination of the two interpolation stencils and the evolution stencil
that to avoid nonlocal interactions, there must be eight grid points between
the lines in the Lagrange interpolation case but only four grid points in the
WENO interpolation case.

We conclude that it is safer to use WENO for the interpolation whenever
the PDE or the underlying surface is nonsmooth or marginally resolved. We
also recommend WENO-based Hamilton–Jacobi methods in the evolution
step. Such methods have been widely used to treat standard Hamilton–
Jacobi equations in R

2 and R
3 with good results and will be relatively safe

when nonsmooth or marginally resolved problems arise.

4 Numerical Results

We now provide some numerical studies illustrating the behaviour and con-
vergence of the method for a variety of interesting cases: passive transport,

14 Colin B. Macdonald, Steven J. Ruuth

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

B
W

ev
o
lv
e

BWex
te

nd

ld

b b grid points
ld interpolation point

× × interpolation kernel

evolution kernel

Fig. 6: The minimum bandwidths involved in a Closest Point Method computation
for a surface in the vicinity of point ♦.

geometric flow under constant normal flow, and redistancing via the stan-
dard reinitialization PDE. We also illustrate the geometric flexibility of
the method by treating normal flow on the triangulated surface of a hu-
man hand, and flow on a Klein bottle, a codimensional-two object in four
dimensions. In all of our examples, our WENO-based interpolation proce-
dure is used to carry out the extension step and standard Hamilton–Jacobi
WENO-based techniques are used to treat the embedding PDE. For effi-
ciency, calculations are performed in a narrow band around the surface as
is described in Section 4.1.

4.1 Bandwidth

The evolution and extension steps of the Closest Point Method may be per-
formed over the entire embedding space. However, such an implementation
is inefficient because only a subset of grid points in the vicinity of the sur-
face have any effect on the numerical solution. A more efficient approach
is to perform calculations in a narrow band around the surface. This band
must be wide enough to ensure that all nodal values within the interpolation
stencil have been accurately evolved. By working in such a band we obtain
the same results as we would for a global calculation because the closest
point extension extends all values out from the surface after each step.

4.1.1 Bandwidth upper bounds We begin by determining upper bounds on
the bandwidth. We consider an R

d embedding space and for simplicity as-
sume that the grid spacing is ∆x in all d dimensions. Our WENO interpo-
lation stencil from Section 3.2 is a d-dimensional hypercube where each side
has a width of 5∆x. Considering Figure 6, the evolution step can therefore
be carried out on a set of grid points which lie within a distance of

BWevolve =
√

32 + · · · + 32∆x = 3
√

d∆x, (9)

Level set equations on surfaces via the Closest Point Method 15

Table 1 Sufficient bandwidth for Closest Point Method evolution and inter-
polation steps in various embedding dimensions.

dim. BWevolve BWextend

2D 4.2426∆x 6.7082∆x
3D 5.1962∆x 7.3485∆x
4D 6∆x 7.9373∆x

from the surface, i.e., the diagonal distance across a d-dimensional hyper-
cube with side widths 3∆x.

To generate accurate values on points inside the interpolation kernel
at tn+1, the evolution kernel needs accurate values inside its own finite
difference stencil at tn. Thus the interpolation step at tn must update all
grid points within the evolution stencil applied at every grid point in the
interpolation stencil around every point on the surface. In our case, the
fifth-order Hamilton–Jacobi WENO finite difference scheme has a stencil
consisting of a “hypercross” (see Figure 6) where each arm has width 6∆x.
From the furthest corner of the interpolation kernel hypercube, the evolution
stencil extends in grid-aligned directions; the extension step should therefore
be performed on a bandwidth of

BWextend =
√

32(d − 1) + (3 + 3)2∆x. (10)

Values of the bandwidths (9) and (10) for two, three and four dimensions
are tabulated in Table 1.

Bandwidth calculations for standard Lagrange interpolation can be car-
ried out using similar considerations; see [18] for further details.

When defining the computational domain based on these upper bounds,
we note there may be some points which are inside BWevolve but are outside
the union of the interpolation kernels around each closest point on the sur-
face. These points therefore have, at most, a negligible effect1 on the solution
as the calculation proceeds. Evolving on these points thus introduces redun-
dant computation. Likewise, there may be points inside BWextend which are
not needed for the evolution; these introduce additional redundant calcula-
tions.

To illustrate these ideas, Table 2 gives some results for a Closest Point
Method calculation on bands which vary by width. We find that our banded
procedures gives results identical to computing over the entire embedding
space. Table 2 also illustrates that using smaller bandwidths than those in
Table 1 results in a different solution.

1 In principle, these points could influence the artificial dissipation parameters
appearing in schemes such as the (global) Lax–Friedrichs (LF) scheme [4,14] or
the local Lax–Friedrichs (LLF) scheme [23,14]. Although we did not observe any
such effects in practice, the stencil set approach discussed next avoids this issue
altogether.

16 Colin B. Macdonald, Steven J. Ruuth

4.1.2 The stencil set approach As noted above, using the bandwidth upper
bounds (9) and (10) to define the computational bands may include unnec-
essary points thus increasing the computational expense without improving
accuracy. An alternate approach is to explicitly construct the sets of points
which define the evolution and extension bands. Let Sevolve be the set of
nodes in the evolution band, and Sextend be the set of nodes in the extension
band. We proceed as follows:

– Initialize both sets to the empty set, i.e., set Sevolve = ∅ and Sextend = ∅.
– Loop over all grid nodes x in the embedding space that are within a

distance BWextend of the surface:
– Loop over all grid nodes y in the interpolation stencil surrounding

cp(x):
– Add node y to the evolution band by setting Sevolve = {y} ∪

Sevolve.
– Let K be the set of grid nodes appearing in the evolution stencil

for y. Add this set to the extension band by setting Sextend =
K ∪ Sextend.

After this procedure, Sevolve and Sextend are the sets over which the evolution
and extension steps should be carried out for the Closest Point Method.

Table 2 confirms that for a LLF calculation, the stencil set approach
produces identical results to computing on the entire embedding domain.
Table 2 also indicates the number of points in each band and we note that
in three dimensions the extension band contains 94% of the points used in
the bandwidth approach. Likewise, the evolution band contains 85% of the
points used in the bandwidth approach. In the Klein bottle computation
in 4D (see Section 4.6), these savings are more significant since only 72%
and 54% of the points are required in the respective bands. The stencil
set approach thus offers computational savings, which, in combination with
its simplicity, leads us to use this approach in the calculations appearing
throughout this section.

4.2 Passive transport: flow under a specified velocity field

An important case of interface motion is passive transport or flow under a
specified velocity field. In this case, an interface—represented by the zero-
contour of a level set function—is advected via a velocity field which is
independent of the interface geometry. On the surface, such a motion cor-
responds to the equation

φt + V · ∇Sφ = 0,

for some velocity field V specified on the surface. To evolve this surface
PDE using the Closest Point Method, we instead treat the embedding PDE

φt + V (cp(x)) · ∇φ = 0, (11)

Level set equations on surfaces via the Closest Point Method 17

Table 2: Numerical verification of the bandwidths for a 3D Closest Point Method
calculation. The actual values of error are not important here; we note only that
the errors are identical (down to the bit-pattern of the double precision floating
point numbers) provided the bandwidths are taken larger than the minimums from
Table 1. (The computation is the same as Table 4 on a grid of 101 × 101 × 101
with error measured as the maximum absolute value of φ along the theoretical
interface location with x ≥ 0 and z ≥ 0.)

banding strategy error points in band
BWevolve BWextend evolution extension

10∆x 10∆x 3.546949572342186954 × 10−8 165335 165335
5.2∆x 7.35∆x 3.546949572342186954 × 10−8 82830 119026

5.15∆x 7.35∆x 3.546949570771058627 × 10−8 82326 119026

5.2∆x 7.3∆x 3.546949572069116105 × 10−8 82830 117970
stencil set bands 3.546949572342186954 × 10−8 70296 111412

no banding 3.546949572342186954 × 10−8 1030301 1030301

on a uniform 3D grid. Equation (11) is simply the standard equation for
passive transport in 3D since V (cp(x)) is well-defined in R

3. It is therefore
natural to use standard methods [14], and approximate ∇φ using upwinding
and WENO approximations in a dimension-by-dimension fashion. Namely,
for each point xj we compute φ+

x from the values {φj−2, . . . , φj+3} using
the Hamilton–Jacobi WENO procedure. Similarly we compute φ−

x using
{φj−3, . . . , φj+2}. If vx, the first component of V (cp(x)), is positive then
we approximate φx with φ−

x , otherwise we approximate φx with φ+
x . The

same procedure is repeated to approximate φy and φz. We then use these
values to approximate V (cp(x)) · ∇φ = vxφx + vyφy + vzφz which allows
us to proceed by the method-of-lines. Time-stepping is done with the three-
stage, third-order strong-stability-preserving (SSP) Runge–Kutta scheme
[23] (SSPRK(3,3)) with ∆t = 1

2∆x and with closest point extensions per-
formed after each stage. We emphasize that apart from the closest point
extensions, this is simply a standard procedure used for evolving (11) in
three dimensions.

To test the numerical convergence of the method we consider a circular
interface on a unit sphere, evolving by passive transport. As shown in Fig-
ure 7, we take a velocity field that is of unit length and emanates from one
pole to the other in a radially symmetric fashion about the axis between
the poles (like lines of longitude on a tilted globe). A comparison of the
numerical result against the exact solution is provided in Table 3. These
results show a clear fifth-order convergence.

For this smooth problem we see that the Closest Point Method gives
the full accuracy of the underlying discretization of the embedding PDE.
This implies that our closest point extension procedure based on WENO
interpolation performs as anticipated and without degrading the fifth-order
accurate treatment of the embedding PDE.

18 Colin B. Macdonald, Steven J. Ruuth

Fig. 7: Passive transport of a circular interface on a sphere. The circle starts
initially at y = −0.9 on the far side of the sphere. It is advected over the surface
of the sphere via the velocity field indicated with arrows to the final solution at
tf = 2.24 shown on the front of the sphere. The exact solution—also a circle—is
shown but within the tolerances of the plot, it is almost indistinguishable from
the numerical solution. A 26×26×26 computational grid is chosen on the domain
[−2, 2]3.

Table 3: Convergence study for a circle moving on a sphere according to a specified
velocity field. Error-in-position measures the error in the position of the interface
along the surface where z = 0. Graphically, the situation is similar to Figure 7,
but with the circle beginning initially at y = −0.25 and running to tf = 1. The
embedding domain is [−2, 2]3.

grid error-in-position order

26 × 26 × 26 1.7263 × 10−4

51 × 51 × 51 2.6721 × 10−6 6.01
101 × 101 × 101 7.3215 × 10−8 5.19
201 × 201 × 201 2.1474 × 10−9 5.09
401 × 401 × 401 6.3800 × 10−11 5.07
801 × 801 × 801 1.8378 × 10−12 5.12

4.3 Normal flow

We next consider the case of normal flow where the motion of the interface
is governed not by an external velocity field but by the shape of the interface
itself. We begin with constant normal flow

φt + C|∇Sφ| = 0,

where the interface moves in the direction of its normal vector at a constant
speed C. If C = 1, we refer to this as unit normal flow and for this problem,

Level set equations on surfaces via the Closest Point Method 19

Table 4: Convergence study for constant normal flow for a circle moving on a
unit-radius sphere. Error-in-position measures the maximum error in the position
of the zero-contour over the quadrant of the sphere where x ≥ 0 and z ≥ 0. The
circle begins at y = −0.25 and the computation proceeds using LLF to tf = 0.5
with ∆t = 1

2
∆x. The computational domain is [−2, 2]3.

grid error-in-position order

26 × 26 × 26 9.6093 × 10−5

51 × 51 × 51 1.8654 × 10−6 5.69
101 × 101 × 101 3.4943 × 10−8 5.74
201 × 201 × 201 5.5902 × 10−10 5.97
401 × 401 × 401 1.0222 × 10−11 5.77
801 × 801 × 801 2.2932 × 10−13 5.48

the underlying 3D embedding PDE is

φt + |∇φ| = 0, (12)

which is a Hamilton–Jacobi equation with Hamiltonian H(∇φ) = |∇φ|.
We discretize the embedding PDE in space using Lax–Friedrichs for

Hamilton–Jacobi equations [14,16]. Specifically we use the numerical Hamil-
tonian

Ĥ =
∣

∣

∣

〈

φ−

x +φ+
x

2 ,
φ−

y +φ+
y

2 ,
φ−

z +φ+
z

2

〉
∣

∣

∣

− αx
(

φ+
x −φ−

x

2

)

− αy
(

φ+
y −φ−

y

2

)

− αz
(

φ+
z −φ−

z

2

)

,
(13)

where φ+
x , φ−

y , etc. are calculated using Hamilton–Jacobi WENO and the
latter three terms provide artificial dissipation. The dissipation coefficients
αx, αy, and αz are calculated as the bounds for partial derivatives of the
Hamiltonian H over some domain, the choice of which leads to variations of
the Lax–Friedrichs scheme. We implement the local Lax–Friedrichs (LLF)
and stencil local Lax–Friedrichs (SLLF) variants [14]. After computing the
numerical Hamiltonian, we can proceed by the method-of-lines where time-
stepping is again done with the SSPRK(3,3) scheme with ∆t = 1

2∆x and
closest point extensions after each stage.

To test the order of convergence of our method, we compute the motion
of a circle on a sphere via unit normal flow. The exact solution is simply the
circle moved along the surface of the sphere, similar to the passive transport
case in Figure 7. Table 4 shows that the Closest Point Method achieves at
least fifth order on this problem, again validating the choice of our WENO
interpolation technique.

Of course, non-spherical surfaces may also be treated. Figure 8 shows
the motion of an initial interface on a torus, as computed using the SLLF
scheme for the embedding PDE. As anticipated, the interface moves from
left to right parallel to the y-axis via unit normal flow, separating and re-
combining as necessary.

20 Colin B. Macdonald, Steven J. Ruuth

Fig. 8: Unit normal flow on a torus with radii 0.8 and 0.4. The interface begins
at y = −1 and the computation proceeds using SLLF to tf = 2. The interface is
shown at every 0.4 units of time. A 101 × 101 × 101 computational grid is taken
on the embedding domain [−2, 2]3.

4.4 Signed Distance / Reinitialization

In practical applications, level set functions may become either too steep or
flat during their evolution. Reinitialization is often used to take general level
set functions closer to signed distance functions, or even to generate accurate
approximations of signed distance functions. Given the widespread use of
such techniques, it is of interest to see whether the corresponding surface
reinitialization PDE

φt + sgn(φ0) (|∇Sφ| − 1) = 0, (14)

can be accurately treated using the Closest Point Method. Here we assume
that the initial interface is, as usual, specified as the zero-contour of an initial
φ0. Starting from φ0, the surface level set equation (14) evolves φ so that in
the steady state φ(x) gives the signed distance (along the surface) from x

to the interface. In practice, this evolution will also move the zero-contour
of φ; we want this motion to be small, and to vanish as the discretization
grid spacings tend to zero.

Treating this problem using the Closest Point Method is straightforward;
we discretize the corresponding three dimensional redistancing embedding
PDE

φt + sgn(φ0) (|∇φ| − 1) = 0, (15a)

and as is standard practice [14,5,13], we replace the signum function with
a smoother version

sgn(φ0) ≈ S(φo) =
φ0

√

φ2
0 + ǫ2

. (15b)

Typically, ǫ is set equal to ∆x but in this work we use ǫ =
√

∆x, as suggested
in [3]. This latter choice of ǫ gave considerably better convergence results

Level set equations on surfaces via the Closest Point Method 21

Table 5: Convergence study for signed distance at t = 5 where φ0 is a signed
half -distance function (i.e., φ0 = d/2 where d is the signed distance function) to
a circular interface at y = −0.25 on the surface of a unit sphere. Error-in-position
measures the maximum error in the position of the contour in the quadrant of the
sphere where x ≥ 0 and z ≥ 0.

grid zero-contour 0.15-contour
error-in-position order error-in-position order

26 × 26 × 26 4.42 × 10−4 6.06 × 10−4

51 × 51 × 51 1.08 × 10−5 5.36 1.71 × 10−5 5.15
101 × 101 × 101 4.08 × 10−7 4.72 5.39 × 10−7 4.99
201 × 201 × 201 2.57 × 10−8 3.99 2.27 × 10−8 4.57
401 × 401 × 401 1.12 × 10−9 4.52 9.14 × 10−10 4.64

than the former. The approach of [17] could also be considered although we
have not done so here.

Following [5,13], we implement a modified Godunov scheme for (15).
Specifically, at each grid point xj we compute φ+

x and φ−
x using Hamilton–

Jacobi WENO. We then select an approximation Φx to φx: if S(φ0)φ
+
x ≥ 0

and S(φ0)φ
−
x ≥ 0 then choose Φx = φ−

x ; if S(φ0)φ
+
x ≤ 0 and S(φ0)φ

−
x ≤

0 then choose Φx = φ+
x ; if S(φ0)φ

+
x > 0 and S(φ0)φ

−
x < 0 then choose

Φx = 0; finally if S(φ0)φ
+
x < 0 and S(φ0)φ

−
x > 0 then we compute s =

S(φ0)
|φ+

x |−|φ−

x |

φ+
x −φ−

x

, and if s ≥ 0, choose Φx = φ−
x or if s < 0, then choose

Φx = φ+
x . Having repeated this procedure in the y and z directions at xj ,

we can approximate

S(φ0) (|∇φ| − 1) ≈ S(φ0)
(√

Φ2
x + Φ2

y + Φ2
z − 1

)

.

The Closest Point Method then proceeds as a method-of-lines computation
with closest point extensions following each stage of the SSPRK(3,3) scheme
with ∆t = 1

2∆x.
Table 5 shows between fourth- and fifth-order convergence for the signed

distance problem. We remark that in both columns of the table, errors in
contour position are used to determine convergence rates.

4.5 Triangulated Surfaces

Our examples thus far have involved fairly simple surfaces. Complex surfaces
may also be treated by the Closest Point Method so long as a closest point
representation of the underlying surface is available or can be computed.

Extensive and freely available collections of complex shapes exist, and
many of the available surfaces are in a triangulated form. Naturally, we wish
to be able to compute flows on such surfaces, a task that, for the Closest
Point Method, requires the construction of a closest point representation
from a surface triangulation.

22 Colin B. Macdonald, Steven J. Ruuth

(a) t = 0 (b) t = 0.665 (c) t = 1.065 (d) t = 1.315

Fig. 9: Unit normal flow on “Laurent’s Hand” shown at various times. The
interface—visualized here as a transition from dark to light—begins at the tip of
the little finger. The computation uses LLF on the computational domain [−1, 1]3

with a 401 × 401 × 401 grid.

A straightforward method to convert triangulated surfaces into closest
point representations is to loop over the list of triangles to directly deter-
mine the triangle closest to each grid node in the embedding space. Then the
closest point on the surface is given by the closest point on the correspond-
ing closest triangle. Näıvely implemented, this approach is computationally
expensive (and inefficient) since each triangle must be examined for each
node.

A much faster construction of the closest point function is obtained
by taking into account that the method works on a narrow computational
band [11]. First, for each triangle, we determine all nodes that are within the
bandwidth, BWextend, of the triangle (nodes that are further away cannot
be influenced by that part of the surface). For each node, this gives a list of
triangles. This list is sufficiently small that it is normally quite practical to
directly examine each member to determine the closest triangle (and hence
the closest point on the surface). See [11] for full details on this initialization
procedure.

Notice that the triangulation is used only in the initial computation
of the closest point representation and for plotting purposes; otherwise the
Closest Point Method calculation proceeds exactly as described in Section 2
and our previous examples. For example, Figure 9 gives a computation for
unit normal flow on the surface of “Laurent’s Hand” [19] (the hand consists
of 351048 vertices comprising 701543 triangles). The flow itself was carried
out using the same code as was used in Section 4.3; as anticipated, the
only modifications appear in the initial computation of the closest point
representation and in the plotting procedure.

Level set equations on surfaces via the Closest Point Method 23

4.6 Klein Bottle

The Klein bottle is a famous hypersurface embedded in 4D which is closed
but has no inside and outside. Although the Klein bottle appears self-
intersecting when drawn in 3D (see Figure 10), the complete hypersurface in
4D is not. We consider a parameterization [24] in terms of (u, v) ∈ [0, 2π)2

x =

{

3
7 cosu (1 + sin u) + 2

7r
(

1 − cos u
2

)

cosu cos v, if u ≤ π,
3
7 cosu (1 + sin u) − 2

7r
(

1 − cos u
2

)

cos v, otherwise,
(16a)

y =

{

8
7 sin u + 2

7r
(

1 − cos u
2

)

sin u cos v − 1
7 , if u ≤ π,

8
7 sin u − 1

7 , otherwise,
(16b)

z =
2

7
r
(

1 − cosu

2

)

sin v, (16c)

w = −8

7
cosu, (16d)

where r controls the radius of the bottle (we use r = 1). We define a function
fKlein : R

2 → R
4 such that x = 〈x, y, z, w〉 = fKlein(u, v) as in (16).

This surface is unlikely have a simple closest point function. However
we have the parameterization (16), and thus for a given grid point x0 =
〈x0, y0, z0, w0〉, we can compute the closest point by minimizing

d2(u, v) = ‖〈x0, y0, z0, w0〉 − fKlein(u, v)‖2
2 ,

over (u, v) (using, for example, Matlab’s fminsearch) to find (umin, vmin).
The closest point to x0 is then

cp(x0) = fKlein(umin, vmin).

Once we have performed this straightforward—albeit time consuming—
series of optimizations, we store the results which can then be reused for
any further Closest Point Method calculations on the same grid.

Figure 10 shows the results of the reinitialization equation calculation
(Section 4.4) on the surface of the Klein bottle. This example illustrates
that the Closest Point Method can treat both non-orientable surfaces and
surfaces of codimension-two. We stress this computation requires no special
changes to the Closest Point Method illustrating that the method can han-
dle very general surfaces without any particular modifications. We also note
that although the computational grid was 51 × 51 × 51 × 51, only 340057
points or about 5% of that grid is contained in the band used for compu-
tation. We anticipate that problems of high codimension would benefit in
terms of memory requirements from a more flexible storage scheme then the
simple 4D array used here.

24 Colin B. Macdonald, Steven J. Ruuth

Fig. 10: Reinitialization / Signed Distance on a Klein bottle from initial conditions
φ0 = 1.1−w. Left: (x, y, z)-projection, right: (x, y, w)-projection. Each transition
from dark-to-light or light-to-dark represents contours of equal distance from the
closer of the two initial interfaces indicated with dashed lines. Note that some
shaded bands appear narrower than others in the 3D projections of the Klein
bottle. The grid is 51 × 51 × 51 × 51 on the domain [−2, 2]4.

5 Conclusions

The Closest Point Method is a recent technique for the solution of PDEs or
other motions constrained to surfaces. This paper applies the Closest Point
Method to level set equations to obtain a robust technique for evolving
interfaces on very general surfaces. Note, in particular, that the method
retains the advantages of the level set method itself—i.e., it automatically
handles self-intersecting interfaces and it makes use of standard high-order
WENO methods in the embedding space (typically R

3) to evolve the level
set equations themselves.

New to the Closest Point Method is our derivation of a Weighted Essen-
tially Non-Oscillatory (WENO) based interpolation scheme suitable for use
in the closest point extension step. The Closest Point Method, using this
interpolation scheme together with standard Hamilton–Jacobi WENO dis-
cretizations for the evolution of the embedding level set equation, achieved
fourth- and fifth-order results on convergence test problems for passive
transport, normal flow, and the reinitialization equation. It is noteworthy
that these are the first results that indicate the Closest Point Method is
capable of computing surface flows with a high order of accuracy. While our
study here focused on the level set equation, WENO interpolation is likely
to find use in many other settings such as Hyperbolic Conservation Laws;
the main requirement being the desire to use a high-order accurate method
for a PDE or surface which is somewhere nonsmooth or marginally resolved.

We computed flows defined on a triangulation of the surface of a human
hand and on the surface of the non-orientable, codimension-two Klein bottle,
illustrating that the Closest Point Method is very flexible with respect to
the geometry and dimension of the surface.

Level set equations on surfaces via the Closest Point Method 25

Our examples show that level set equations on surfaces can be treated
to high order in a straightforward manner using the Closest Point Method.
We are investigating the application of the Closest Point Method to other
classes of PDEs, including high-order PDEs which should be treated with
implicit time-stepping. We are also interested in applications of PDEs on
surfaces such as might arise in image inpainting or segmentation on surfaces.

Acknowledgements The authors thank Richard Tsai for his suggestions regarding
convergence for the reinitialization equation.

A Fourth-order WENO interpolation

In Section 3 we derived a formally sixth-order WENO interpolation scheme
using three candidate interpolants. We can also construct a fourth-order (in
smooth regions) WENO interpolation scheme based on two quadratic inter-
polant candidates. In this case, we have the four points xi−1, xi, xi+1, xi+2

and corresponding data fi−1, fi, fi+1, fi+2 and again want to estimate f(x)
for x ∈ [xi, xi+1). The two candidate interpolants are

p1(x) = fi + fi+1−fi−1

2∆x
(x − xi) + fi+1−2fi+fi−1

2∆x2 (x − xi)
2,

p2(x) = fi + −fi+2+4fi+1−3fi

2∆x
(x − xi) + fi+2−2fi+1+fi

2∆x2 (x − xi)
2,

with ideal weights C1(x) = xi+2−x

3∆x
and C2(x) = x−xi−1

3∆x
, and smoothness

indicators

IS1 =
(

26fi+1fi−1 − 52fifi−1 − 76fi+1fi + 25f2
i+1 + 64f2

i + 13f2
i−1

)

/12,

IS2 =
(

26fi+2fi − 52fi+2fi+1 − 76fi+1fi + 25f2
i + 64f2

i+1 + 13f2
i+2

)

/12.

The fourth-order WENO interpolant is thus

IWENO4(x) = w1(x)p1(x) + w2(x)p2(x),

where w1(x) and w2(x) are calculated from the smoothness indicators by

αi(x) = Ci(x)
(ε+ISi)2

and wi(x) = αi(x)
α1(x)+α2(x) , i = 1, 2.

References

1. Marcelo Bertalmı́o, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro.
Variational problems and partial differential equations on implicit surfaces.
J. Comput. Phys., 174(2):759–780, 2001.

2. Li-Tien Cheng, Paul Burchard, Barry Merriman, and Stanley Osher. Motion
of curves constrained on surfaces using a level-set approach. J. Comput. Phys.,
175(2):604–644, 2002.

3. Li-Tien Cheng and Richard Tsai. Redistancing by flow of the time dependent
Eikonal equation. 2008. Under Review.

26 Colin B. Macdonald, Steven J. Ruuth

4. M. G. Crandall and P.-L. Lions. Two approximations of solutions of
Hamilton–Jacobi equations. Math. Comp., 43(167):1–19, 1984.

5. Ronald P. Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. A non-
oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost
fluid method). J. Comput. Phys., 152(2):457–492, 1999.

6. John B. Greer. An improvement of a recent Eulerian method for solving PDEs
on general geometries. J. Sci. Comput., 29(3):321–352, 2006.

7. Guang-Shan Jiang and Danping Peng. Weighted ENO schemes for Hamilton–
Jacobi equations. SIAM J. Sci. Comput., 21(6):2126–2143, 2000.

8. Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted
ENO schemes. J. Comput. Phys., 126(1):202–228, 1996.

9. Culbert B. Laney. Computational gasdynamics. Cambridge University Press,
Cambridge, 1998.

10. Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-
oscillatory schemes. J. Comput. Phys., 115(1):200–212, 1994.

11. Barry Merriman and Steven J. Ruuth. Embedding methods for the numerical
solution of PDEs on manifolds. In preparation.

12. Barry Merriman and Steven J. Ruuth. Diffusion generated motion of curves
on surfaces. J. Comput. Phys., 225(2):2267–2282, 2007.

13. Ian Mitchell. A toolbox of level set methods. Technical Report TR-
2004-09, University of British Columbia Department of Computer Science,
July 2004. http://www.cs.ubc.ca/~mitchell/ToolboxLS/Papers/Toolbox/

toolboxLS-1.0.pdf.
14. Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit

surfaces, volume 153 of Applied Mathematical Sciences. Springer-Verlag, New
York, 2003.

15. Stanley Osher and James A. Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Com-

put. Phys., 79(1):12–49, 1988.
16. Stanley Osher and Chi-Wang Shu. High-order essentially nonoscillatory

schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal., 28(4):907–
922, 1991.

17. Giovanni Russo and Peter Smereka. A remark on computing distance func-
tions. J. Comput. Phys., 163(1):51–67, 2000.

18. Steven J. Ruuth and Barry Merriman. A simple embedding method for solving
partial differential equations on surfaces. J. Comput. Phys., 227(3):1943–1961,
2008.

19. L. Saboret, M. Attene, and P. Alliez. “Laurent’s Hand”, the AIM@SHAPE
shape repository. http://shapes.aimatshape.net, 2007.

20. Kurt Sebastian and Chi-Wang Shu. Multidomain WENO finite difference
method with interpolation at subdomain interfaces. J. Sci. Comput., 19(1-
3):405–438, 2003.

21. J. A. Sethian. Level set methods and fast marching methods: evolving inter-

faces in computational geometry, fluid mechanics, computer vision, and ma-

terials science, volume 3 of Cambridge Monographs on Applied and Computa-

tional Mathematics. Cambridge University Press, Cambridge, second edition,
1999.

22. Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws. Technical Report NASA
CR-97-206253 ICASE Report No. 97-65, Institute for Computer Applications
in Science and Engineering, November 1997.

Level set equations on surfaces via the Closest Point Method 27

23. Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially
nonoscillatory shock-capturing schemes. J. Comput. Phys., 77(2):439–471,
1988.

24. Wikipedia contributors. Klein bottle. Wikipedia, the free encyclope-
dia, http://en.wikipedia.org/w/index.php?title=Klein_bottle&oldid=

133679151, May 2007. Accessed 2007-05-29.

