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Motivation & Introduction

• Look at Wright et al’s video of Earth’s mantle convection:
www.youtube.com/watch?v=-kDb0HlDsIM

These are modelled using partial differential equations (PDEs).

Modelling: describing a physical (or otherwise) problem using mathematics. Often approxi-
mating the situation by making assumptions about the relative importance of various aspects
of the problem.

Unknowns in Grady’s model would include, amongst other things:

T (x, y, z, t) temperature, ~u(x, y, z, t) velocity

Can’t store a continuum function T (x, y, z, t) on a computer, so it is discretized, that is,
stored at a finite set of points (or otherwise represented using a finite number of degrees of
freedom). The PDEs in the model are approximating using these discrete values.

Time-stepping: causality: often discrete soln values at next (discrete) time determined
approximately in terms of soln values at previous discrete time. This gives a large nonlinear
system (millions of unknowns).

Discrete solver: find a (the?!) discrete soln of this nonlinear system, typically via iteration:
errors will be made here as we truncate a sequence after some finite number of iterations.

Results visualized (approximately) or overall statistics collected or, . . . From this, design
decisions can be made (how to change the shape of the airplane, where to drill the next oil
well, which stock to buy, etc). Or results compared against a simpler qualitative model (e.g.,
continental drift).

Often in a tight loop, results guide changes to the problem, then run simulation again. E.g.,
inverse problems.

Finally, usually all parts of this happen on a computer with a very fine but none-the-less
discrete number system (floating point arithmetic) where every calculation introduces a small
error.

Source of Error

Modelling
Experimental (data collection)
Discretization (space and time) \
Iteration \ Discrete
Visualization / Errors
Rounding Error (floating point) /

We cannot just assume all the above will work! Or give accurate enough results to be usable
in design decisions, scientific inquiry, etc.
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Modelling error might be Someone Else’s Problem but we want to be able to force the discrete
errors (“numerical” errors) in the simulation small enough so that we (or the user) can see
the modelling error. E.g., to compare it to physical experiment or some other validation with
reality.

How? Choose/design/invent numerical methods:

• discrete solver should get arbitrarily close to the (exact) solution of the discretized
problem (e.g., as number of iterations increase).

• discretization should become arbitrarily close to the PDE soln as the number of discrete
points increases.

Both of these properties are called convergence (of iterative solver and of the discretization
respectively).

Objectives of this course

Introduce basic ideas of discretization, approximation, iterative solution of systems, conver-
gence of methods to approximate differential equations (ODEs and PDEs).

Numerical Analysis: plenty of nice mathematics here—we’ll see some—but one can also go
very far down the rabbit hole of the “analysis” in “numerical analysis”.

Some ingredients which will hopefully be useful if your career intersections with computer
simulation (and so many areas do!).

Start of training into developing your own methods for new models.

• Often best approach here is reuse of what exists (sometimes software, sometimes
algorithms) and invent only the novel new bits.

• As computers get bigger, we can solve the same problems faster but no wants to solve
the same problems. Science/engineering/practice always driving bigger problems (or
wrapping the old problems up in tight loops).

• Scientific computing problems are usually too big and too complex to repeatedly re-
invent the wheel. And the importance of good algorithms increases as problem size
increases. “Big Oh is very patient”.

The course in a nutshell

Derivation and demo for finite differences on the heat equation.

First topic: Root-finding

Bisection and Newton’s method.

Convergence rates: - linearly - superlinear - quadratic

Newton for systems.

Intro to optimization.
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