
Math 405: Topic 6: Initial Value Problems

References: [LeVeque 2007]

Advanced reference: [Hairer, Norsett, Wanner]

Time-stepping methods for ODEs (and PDEs)

Consider ODE: ut = f(u) (or more generally ut = f(u(t), t)).

Initial Value Problem (IVP): u(0) = η specified (in general at t = T0).

Simplest method: forward Euler (a forward difference in time).

un+1 − un

k
= f(un)

Here we have a grid in time: tn = nk, k > 0 a fixed time step. Often “∆t” used as well.

|-------|-------|-------|-------|-------|-----
t0=0 t1=k t2=2k ...

Forward Euler is a “one-step method” and an “explicit method”:

un+1 = un + kf(un).

Example: van der Pol equation

y′′ + C(y2 − 1) + y = 0 and IC. Convert to system. Matlab ode45/ode15s. Fortran odepack.

Example: The Method of Lines (MOL)

Can think of U(t) as a vector, so heat equation ut = uxx with zero Dirichlet boundary
conditions and some initial condition could be discretized in space (with our favourite matrix)
to give:

| | |-2 1 | | |
| u (t) | | | | u (t) |
| 1 | | 1 -2 1 | | 1 |
| | | | | |

d | . | | . . . | | . |
-- | . | = 1/h^2 | . . . | | . |
dt | . | | . . . | | . |

| | | | | |
| | | 1 -2 1 | | |
| u (t) | | | | u (t) |
| m | | 1 -2 | | m |

So we’ve gone from PDE to semidiscrete system of ODEs. Initial conditions of the PDE
become initial conditions (a vector) for the ODE system. Now we can discretize in time
(somewhat) independently.

Note: not all PDE finite differences methods are MOL.
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Consistency for Initial Value Problems (IVP)

Focus on a fixed (but arbitrary) time t = T . With fixed time-step k it will take N = T/k
steps to get there. Convergence means:

lim
k→0,Nk=T

un = u(T )

Defn: a method is said to be convergent if we obtain convergence in above sense for any ODE
problem with f Lipschitz continuous in u, for every fixed time T > 0 where the ODE has a
unique solution, using any reasonable starting values.

Reasonable starting value? The method will need one or more starting value and these need
to be consistent (limk→0) with the initial conditions.

(We might also speak of methods which are convergent within a restricted class of problem.)

As in previous lectures, the method will need to be consistent (solving the correct problem).

LTE, one-step error, and consistency for ODEs

Still Taylor series analysis. Two basic contradictory definitions of LTE in the literature (oops,
see LeVeque Sec 5.5).

1. Apply the Taylor analysis to un+1−un

k = f(un), the form of the “difference equation”
that “directly models the derivatives” [LeVeque pg121].
For forward Euler, this gives LTE of O(k).
This tends to be more convenient for PDEs: for now we will concentrate on this
definition.

2. Apply the Taylor analysis to the form un+1 = un + kf(un). This is sometimes called
the one-step error (the error we make assuming previous steps are exact). Under this,
LTE for forward Euler is O(k2). But we apply O(1/k) steps for an estimated/expected
global error of O(k).

Stability for ODEs: Zero stability

Many types of stability (zero-stab, abs-stab, L-stab, A-stab, L(α)-stab, G-stab, etc. . . )

“Zero-stability” is analogous to what we saw earlier for the BVP case. It bounds the growth of
the local truncation error independent of time-step k. This gives a version of the “fundamental
theorem”: consistency + stability implies convergence. (see LeVeque 2007 or other books for
details).

Pleasantly, for “one-step methods” (where each step uses just one previous solution value,
such as forward Euler), any consistent method is zero-stable and thus convergent! [due to
Dalquist, proof omitted]

BUT zero-stability theory applies for limk→0, and we seek something of more practical use.

Stability for ODEs: Absolute stability

Dahlquist test problem: u′ = λu, u(0) = 1.

Here λ is a complex number. Exact solution is u(t) = exp(λt). Real part of λ negative gives
decay in the exact solution.

We apply the numerical method to this test problem and:
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If soln grows without bound, we say numerical method is unstable.
Otherwise, we say the numerical method is (absolutely) stable.

Note these ideas hold for finite k. Why the Dahlquist test equation? Think of λ as eigenvalues
of your RHS (eigendecomposition of linearized RHS).

Some methods and stability regions

Region of absolute stability: region of the complex plane where choice of kλ gives absolute
stable.

1. Forward Euler: O(k)
as above, put in the Dahlquist test problem. [sketch]

2. Improved Euler method: (O(k2). [sketch]
vn+1 = vn + k

2
(
f(vn) + f(vn + kf(vn))

)
3. “The Fourth-order Runge-Kutta Method” O(k4)
a = kf(tn, vn),
b = kf(tn + k/2, vn + a/2),
c = kf(tn + k/2, vn + b/2),
d = kf(tn + k, vn + c),
vn+1 = vn + 1

6 (a+ 2b+ 2c+ d).
If you could take just one formula to a desert island, this is it. [sketch]

4. Backward Euler: un+1−un

k = f(un+1). O(k) [sketch]

5. Trapezoidal Rule: un+1−un

k = 1
2

(
f(un) + f(un+1)

)
.

Accuracy: O(k2), but somewhat oscillatory (be careful). [sketch]

These last two are implicit, more on that later. The stability region including the left-hand
plane is called “A-stability”.

Dahlquist in 1979:

I didn’t like all these “strong”, “perfect”, “absolute”, “generalized”, “super”,
“hyper”, “complete” and so on in mathematical definitions, I wanted something
neutral; . . . I chose the term “A-stable”.

Growth factor

See above examples, note for forward Euler, we computed un = (1 + z)n with z = kλ. Here
G(z) = 1 + z is known as the Growth Factor. The growth factor should approximate ez.

L-stability: asymptotic stability

Like A-stability, but with additional property: G(z)→ 0 as Re(z)→ −∞. This matches the
asymtotic behaviour of the exact solution for large negative z.

Caution: some sources swap meaning of A-stability and L-stability (!!).
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