
Math 405: Topic 7a: PDEs and the method-of-lines

Recall:

forward Euler: vn+1 = vn + kLvn

x (j,n+1)
|
|

x------x------x
(j,n)

backward Euler: vn+1 = vn + kLvn+1

(j+1,n+1)
x------x------x

|
|
x (j,n)

Time-step restrictions

Example: heat equation: disc./ in space with our favourite “1 -2 1” matrix.

We looked at eigenvalues before: they depend on h. Largest magnitude is −4/h2. Need this
inside the stability region.

Choose forward Euler: need λk > −2.

Leads to restriction on k for stability in time:

k ≤ 1
2h

2

Stability in finite difference calculations

A fourth-order problem

ut = −uxxxx.

How to discretize? Think (uxx)xx. . . , this leads, eventually, to

vn+1
j = vnj −

k

h4

(
vnj−2 − 4vnj−1 + 6vnj − 4vnj+1 + vnj+2

)
[demo_07_biharmonic.m]

Note ridicuously small time steps required. Let’s try to see why (a stability issue) and what
we can do about it (implicit A-stable ODE methods).
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von Neumann analysis

One approach is von Neumann Analysis of the finite difference formula, also known as discrete
Fourier analysis, invented in the late 1940s.

Suppose we have periodic boundary conditions and that at step n we have a (complex) sine
wave

vnj = exp(iξxj) = exp(iξjh),

for some wave number ξ. Higher ξ is more oscillatory. We will analysis whether this wave
grows in amplitude or decays (for each ξ). For stability, we want all waves to decay.

For the biharmonic diffusion equation, we substitute this wave into the finite difference scheme
above, and factor out exp(iξh) to get

vn+1
j = g(ξ)vnj ,

with the amplification factor

g(ξ) = 1− k

h4

(
e−i2ξh − 4e−iξh + 6− 4eiξh + ei2ξh

)
.

This can be simplified to:

g(ξ) = 1− 16k
h4 (sin(ξh/2))4.

As ξ ranges over various values sin is bounded by 1 so we have

1− 16k/h4 ≤ g(ξ) ≤ 1.

A mode will grow if |g(ξ)| > 1. Thus for stability we want |g(ξ)| ≤ 1 for all ξ , i.e.,

1− 16k/h4 ≥ −1, or k ≤ h4/8.

For h = 0.025, as in the demo code, this gives

k ≤ 4.883e− 08.

This matches our experiment convincingly, but confirms that this finite difference formula is
not really practical.

Method-of-lines

As an alternative to von Neumann analysis, we follow the linear stability analysis for the
ODE methods. The spatial discretization gives us (numerically anyway) the eigenvalues of
the semidiscrete system. Need these eigenvalues to lie inside the absolute stability region of
the ODE method.

Note: this involves the eigenvalues of the semidiscrete system, not the original right-hand-side
of the PDE.

Demo: in Matlab, run demo_07_biharmonic, then use ‘eigs’ to compute ‘largest magnitude’
eigenvalues of the discretized biharmonic operator: need k times these less than 2 for forward
Euler stability. Note this gives almost the same restriction as observed in practice (and
calulated with von Neumann analysis)

pg 2 of 4



Stability, Consistency, Convergence

Lax equivalence theorem: for linear PDEs, consistency + stability implies convergence.

With a particular notion of stability: Lax-Richtmyer Stability. . .

Suppose we have k = 0.4h2 (some fixed relationship). Say we can write our fully-discrete
system as

Un+1 = B(k)Un + bn(k)

where B(k) is a matrix. This is the case for our heat example with “1 -2 1” and forward
Euler for example.

Defn: Linear method in this form is Lax–Richtmyer stable if

||B(k)n|| ≤ CT

where CT constant indep of k, n but could depend on final time T .

Example: Fisher-KPP Equation

Independent 1937 discoveries for biological applications (spread of species): Fisher; Kol-
mogorov, Petrovsky, and Piscounov

ut = εuxx + u− u2.

Solutions: traveling waves. Explicit finite difference model is similar to heat equation. Note
we have “nonhomogeneous” BCs u(0) = 1, u(20) = 0; the former is implemented by using an
extra vector “BC”. [demo_07_fisher_kpp.m]

+-- --+
| |-2 1 | | n | |1/h^2| |
| | | | u | | | |
| | 1 -2 1 | | 1 | | 0 | |
| | | | | | | |

n+1 n | | . . . | | | | . | 2 |
u = u + k * | eps/h^2 | . . . | | | + | . | + (u -u ) |

| | . . . | | | | . | j j |
| | | | | | | |
| | 1 -2 1 | | n | | | |
| | | | u | | | |
| | 1 -2 | | N | | 0 | |
+-- --+

BC

Accuracy on heat equation

Forward and Backward Euler are both consistent with an expected error of O(k) +O(h2).

discuss w.r.t. stability of each scheme. . .

FE: k = O(h2) Maybe you only want first-order accuracy, is so, this extra work is wasteful.

(Yet another “definition” of stiffness: if your choice of timestep k is motivated by stability
rather than accuracy, you are probably dealing with a stiff problem.)
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Higher-order in time

Even if we want second-order perhaps there are better ways, use a better ODE solve:
trapezoidal rule in time + second order in space. When used on heat equation, this is called
“Crank–Nicolson”:

vn+1 = vn + k

2Lv
n+1 + k

2Lv
n.

or

Bvn+1 = Avn

Note the stencil of this scheme:

(j+1,n+1)
x------x------x

|
|

x------x------x
(j,n)

Caution

Sometimes hard to tell from numerical convergence study which terms are dominating. Can
also do tests to isolate the error components in h and k.
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