
Math 405 7b: PDEs, IMEX, advection, 2D

Splittings

Treating different terms/dimensions/waves/etc in a PDE in different ways is a big area.
E.g., number of hits on Google for “Operator Splitting” or “Strang Splitting”. Here’s a few
examples for time-dependent problems.

IMEX: implicit/explicit methods

Example: Kuramoto–Sivashinsky: ut = −uxx − uxxxx − (u2/2)x

Or more generally:

ut = Lu+N(u),

Here L linear and N nonlinear operators. Simplest idea is “IMEX Euler”: forward Euler for
N and backward Euler for L. [demo_07_kuramoto_sivashinsky.m]

IMEX with higher-order accuracy

For higher-order accuracy, see:

• [Ascher–Ruuth–Spiteri, APNUM 1997, Implicit-explicit Runge-Kutta methods for time-
dependent partial differential equations]

• [Ascher–Ruuth–Wetton, SINUM 1995, Implicit-explicit methods for time-dependent
PDEs]

I like the “SBDF” semi-implicit BDF schemes from this last reference, particularly for
reaction-diffusion problems. E.g., SBDF-2:

un+1 = 4/3un − 1/3un−1 + 2k/3Lun+1 + 4k/3N(un)− 2k/3N(un−1).

Exponential Time Differencing

ETDRK treats L part exactly (often in the “Fourier domain”) and uses Runge–Kutta for N .

[Cox–Matthews, JCP 2002, “Exponential Time Differencing for Stiff Systems”]

[Kassam–Trefethen, SISC 2005, “Fourth-Order Time-Stepping for Stiff PDEs”]

Example: Korteweg–de Vries eqn:

ut + uux + uxxx = 0.

Note solitons pass through each other with no lasting effect. Numerical computations were
crucial in this discovery (e.g., Fornberg–Whitham, 1970’s). [demo_07_etd_kdv.m] from
Kassam–Trefethen paper. (We will discuss “spectral” spatial discretizations later).

pg 1 of 4

Implementation issues

Our demos often use sparse matrices; this saves storage by only storing nonzero entries. Can
also be faster to do matrix-vector multiply (for very big problems). You can also implement
finite differences using for-loops. [demo_07_heat_mol_matrix.m] [demo_07_heat_loops.m]

Loops can be much slower in Matlab (and other high-level languages), although “JIT-compilers”
often speed it up. Personally, I like the abstraction of constructing a discrete operator to
approximate my derivatives.

Q: in Matlab, why might k*(L*u) be preferable to k*L*u?

Q: why is h:h:1 the correct grid (rather than 0:h:1) for a periodic computation on [0, 1]?

Advection problems

Wave equation utt = ∇u or in 1D: utt = uxx. A fully discrete scheme is “the Leap Frog
method” [demo_07_wave_leap.m]:

vn+1
j − 2vn

j + vn−1
j

k2 =
vn

j−1 − 2vn
j + vn

j+1

h2 .

First-order advection

1D: ut + aux = 0.

2D: ut +w · ∇u = 0 where vector field w(x, y) is wind velocity. More generally ut +∇ · (wu)).

Advection and the wave equation are quite different from diffusion: they are hyperbolic and
“information” about the solution travels along characteristics. These are the lines traced out
by the vector field w(x, y).

Upwinding

In 1D, information can flow left or right. We can approximate ux with either of two finite
difference schemes:

Backward difference: ux ≈ uj−uj−1
h

Forward difference: ux ≈ uj+1−uj

h

For stability, we should select which one to use based which way the wind is blowing: use the
one with information from “upwind”/“upstream”. (The fluid-like description is reasonable:
commonly used in advection dominated computational fluid dynamics).

Specifically: if a > 0, use backward difference and if a < 0, use forward differences. If a = 0,
who cares, its multiplied by zero. [demo_07_advection1d.m]

Variable coefficient advection

ut + a(x)ux = 0.

Here we upwind at each step. In Matlab, its easy to just compute both and use pointwise
“dotstar” multiplication. (In some parallel computing paradigms, this is usually cheaper than
“if then” constructs). [demo_07_variable_adv.m]

pg 2 of 4

Advection in 2D

ut + a(x, y)ux + b(x, y)uy = 0.

Or as noted above we can write this as:

ut +∇ · (~wu) = 0,

with a vector field ~w(x, y). [demo_07_2d_adv.m]

Diffusion in 2D

Heat: ut = ∇2u = uxx + uyy. More generally: ut +∇ · (κ∇u) = f . Solutions: u(t, x, y).

Say on a square or rectangle. We can apply centered 2nd-order approx to each derivative. In
the method-of-lines approach, we write

uxx + uyy ≈
un

i−1,j − 2un
ij + un

i+1,j

h2 +
un

i,j−1 − 2un
ij + un

i,j+1

h2 .

This gives a spatial stencil of:

(1)
| (i,j+1)
|
|

(1)------(-4)-----(1)
(i-1,j) |(i,j) (i+1,j)

|
|

(1)
(i,j-1)

Using forward or backward Euler, accuracy is O(k) +O(h2).

And a stability restriction for FE of k < h2/4.

Implementation In principle, our “finite difference Laplacian” maps a matrix of 2D grid
data to another, and is thus a “4D tensor”. However, in practice we can “stretch” out the 2D
matrix to a longer 1D vector. Then the tensor becomes a matrix:

dU

dt
= LU.

How does this “stretch” work? Need an ordering of the grid points. In Octave/Matlab, the
following ordering is convenient:

>> [xx, yy] = meshgrid(0:0.5:1, 2:0.5:3.5)
>> x = xx(:) % stretch
>> y = yy(:)

And to recover the 2D solution:

>> reshape(u, size(xx))

pg 3 of 4

Also assume zero boundary conditions:

^ y
| 0 0 0

3.5+ 0 x4 x8 x12 0
3.0+ 0 x3 x7 x11 0
2.5+ 0 x2 x6 x10 0
2.0+ 0 x1 x5 x9 0

| 0 0 0
+-------+----+----+---------> x

0 0.5 1

Matrix structure The corresponding unknowns are u1, . . . , u12. The discrete Laplacian:

-4 1 0 0 1 0 0 0 0 0 0 0		u1
1 -4 1 0 0 1 0 0 0 0 0 0		u2
0 1 -4 1 0 0 1 0 0 0 0 0		u3
0 0 1 -4 0 0 0 1 0 0 0 0		u4

1 | 1 0 0 0 -4 1 0 0 1 0 0 0| | u5 |
L U = --- | 0 1 0 0 1 -4 1 0 0 1 0 0| | u6 | .

h^2 | 0 0 1 0 0 1 -4 1 0 0 1 0| | u7 |
0 0 0 1 0 0 1 -4 0 0 0 1		u8
0 0 0 0 1 0 0 0 -4 1 0 0		u9
0 0 0 0 0 1 0 0 1 -4 1 0		u10
0 0 0 0 0 0 1 0 0 1 -4 1		u11
0 0 0 0 0 0 0 1 0 0 1 -4		u12

We see that L has a block structure. We can build this easily with the Kronecker
product (kron() in Matlab, [demo_07_heat2d.m]). See also diff2d_matrices.m,
diff3d_matrices.m in HW4.

Caution: meshgrid versus ndgrid ordering. . .

Spatially varying diffusion

ut = ∇ · (k(x)∇u)

In one dimension, ut = (k(x)ux)x. More generally, diffusion constant might depend on u.

A common approach to discretizing this is to use a forward difference Dx
+ on the ux term

then evaluate k(x) at the midpoint: k(xi+ 1
2
), so that

k(x)ux ≈ k(xi+ 1
2
)ui+1 − ui

h
.

Then, differentiate the result approximately with a backwards difference Dx
−:

(k(x)ux)x ≈ Dx
−(k(xi+ 1

2
)Dx

+u) =
k(xi+ 1

2
) ui+1−ui

h − k(xi− 1
2
) ui−ui−1

h

h
.

If k known only at the grid points, use neighbour averages for midpoint diffusion coefficient:

k(xi+ 1
2
) ≈ 1

2
(
k(xi) + k(xi+1)

)
,

(important if k depends on u, e.g., k(|∇u|).) You can do this in higher-dimensions as well.

pg 4 of 4

	Math 405 7b: PDEs, IMEX, advection, 2D
	Splittings
	IMEX: implicit/explicit methods
	IMEX with higher-order accuracy
	Exponential Time Differencing

	Implementation issues

	Advection problems
	First-order advection
	Upwinding
	Variable coefficient advection
	Advection in 2D
	Diffusion in 2D
	Spatially varying diffusion

