
Math 405 12: Spectral Methods

Introduction

Notice that when representing finite difference schemes with matrices, that the bandwidth
gets wider as we increase the order of accuracy of our finite difference schemes:

E.g.,

1/h2 × “1 -2 1”, 2nd-order approx of Laplacian.

1/(12h2) × “-1 16 -30 16 -1”, 4th-order approx of Laplacian.

etc.

These give tri-diagonal, pentadiagonal, etc (and with fill-in in the corners for periodic
BCs—circulant matrices).

How far can we take this? Fill the matrix completely. Gives “spectral accuracy” (better than
any polynomial power of h). Example: accuracy could be 2h. Typically very high accuracy,
at least for analytic functions.

This is one approach to spectral methods, but the computations can be done more efficiently. . .

Fourier-based methods

Fourier series and Fourier transforms express functions of a spatial variable x in term of
frequency (or wave number k)

Let f̂(k) be the Fourier transform of f(x). Integration by parts gives nice result for n-th
derivative of f :

f̂ (n)(x)(k) = (ik)nf̂(k)

Discrete Fourier Transform

In the discrete and bounded x case: on a grid x = {0, h, 2h, . . . , 2π−h}, we have the discrete
Fourier transform:

v̂k = h

N∑
j=1

exp(−ikxj)vj .

And inverse:

vk = h

2π

N/2∑
k=−N/2+1

exp(ikxj)v̂k.

This gives us a physical domain and a Fourier domain. An advantage of the
Fourier/frequency domain is that we can differentiate in the Fourier domain by multiplying
by (ik).
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FFT

A dense N ×N matrix will take O(N2) to evaluate a derivative via matrix-vector multiply.

The Fast Fourier Transform (FFT) takes O(N logN). So an algorithm for spatial derivatives
is:

1) Compute FFT

2) Multiply by (ik) (or (ik)2, etc)

3) Compute IFFT

Complexity: O(N logN).

Caveats: periodic boundary conditions, smooth solutions. Various issues with aliasing when
doing nonlinear problems.

[demo_12_grayscott_spectral.m] Gray–Scott pattern formation combining Fourier spectral
methods using the FFT with forward Euler timestepping.

In fact, we can do better using e.g., convolution-based time-stepping. See [demo_12_convolution.m].

Another demo: quasi-geostrophy movie shows cyclone/anticyclone symmetry breaking simu-
lation using FFT-based spectral methods on the shallow-water equations.

Spectral methods on nonperiodic functions

Fourier not appropriate because of Gibbs Phenemenon (periodic extension introduces jumps).

Often Chebyshev grids used: cluster grid points near the boundaries.

[see diagram, cos of equispaced points on a semicircle.]

Chebfun

A mathematics and software project for spectral methods using “Chebyshev technology”.
Represents functions by (very) high-degree polynomials over Chebyshev grids.

Somewhere between numerical computing and symbolic computing. “Numerical computing
with functions”. Fast like numerical computing but with a “feel of symbolic computing”.

Functions are expressed as high-degree polynomial interpolants. FFTs are used “under the
hood” ==> fast. (Works because of equivalence between Fourier series on periodic equispaced
grids and Chebyshev grids.)

One of the goals is to compute the correct answer to full 15-digit precision.

Software: http://www.chebfun.org

Mathematics: textbook: Approximation Theory and Approximation Practice.
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