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Abstract— Vorticity dynamics resulting from the shallow water
equations are investigated for specific potentials, which prevent
the formation of gravity waves. We consider only the small
Rossby number case, and solve asymptotically to leading order
and first correction. Spectral methods are applied to this problem,
and the implementation and arising complications are discussed.
Resulting vorticity fields exhibit the formation of coherent
structures, which parallels previous studies of the shallow water
system.

Index Terms— rotating shallow water, spectral methods,
asymptotics.

I. INTRODUCTION

THE 2D rotating shallow water equations (rSW) form one
of the systems used to model mesoscale dynamics in the

ocean and the atmosphere. In 1994, Polvani et al ([1]) analyzed
solutions to rSW for various Rossby (R) and Froude (F)
numbers, without making any asymptotic assumptions limiting
their sizes as the system evolves. Polvani et al ([1]) take care to
ensure gravity waves do not affect the long-term solution, and
consider the sensitivity of gravity wave formation on the nu-
merical method. Studies of the vorticity field evolution shows
the development of coherent structures, which leads to a break
down in symmetry between cyclones and anticyclones from
random and symmetric initial conditions, ([1]). In particular,
Polvani et al ([1]) notes greater anticyclonic preference with
larger Froude number.

In our study, we circumvent the numerical dependence of
gravity wave formation by restricting velocity and height mea-
sures to specific potentials, which eliminates the possibility of
gravity wave formation. We only consider the case where F =
Ro, for small Rossby number. Assuming Ro remains small as
the system evolves, we consider an asymptotic expansion in
Ro. The choice of potentials enables the system to reduce
nicely in the leading order and first correction.

Our aim for this project is to implement a numerical
scheme to analyze vorticity evolution in rSW for the particular
potentials. We outline the algorithm used, and discuss the
complications that arise in the computational scheme. We
qualitatively compare our results to Polvani et al and Hakim
et al ([2]), which show coherent structure formation.

II. THE EQUATIONS

Consider the two-dimensional rotating shallow water equa-
tions

Du

Dt
− fv = −g

∂h

∂x
, (1a)

Dv

Dt
+ fu = −g

∂h

∂y
, (1b)

∂h

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0, (1c)

where u and v are the horizontal velocities, h is the fluid
height, f is the Coriolis parameter, and g is the gravitational
constant. These equations, after scaling and nondimensional-
izing become

R
Du

Dt
− v = −hx, (2a)

R
Dv

Dt
+ u = −hy, (2b)

R
Dh

Dt
+ (1 + Rh)(ux + vy) = 0, (2c)

where R = advection effects
Coriolis effects = U

fL
< 1. From (2) we can derive

the potential vorticity relations

Dq

Dt
= 0, (3a)

1 + Rq =
1 + R(vx − uy)

1 + Rh
. (3b)

If we substitute the potentials

u = −Hy − F, (4a)
v = Hx − G, (4b)
h = Gx − Fy + H, (4c)

([3], and see also [4]) into (2) the following system results:

∇2G − G = R

([
Dh

Dt
+ h(ux + vx)

]

y

+
Du

Dt

)
,

(5a)

−(∇2F − F ) = R

([
−

Dh

Dt
+ h(ux + vx)

]

x

+
Dv

Dt

)
,

(5b)

q − (∇2H − H) = R(−qh) + O
(
R2
)
, (5c)

Dq

Dt
= 0. (5d)

Note that although (5) seems to have many time deriva-
tives, most cancel out in the leading-order and first-correction
leaving only a advective derivative on q; this is one of the
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reasons why this is a particularly convenient formulation for
computation.

First we consider the leading order (zero-Rossby number)
or Quasi-Geostrophic (QG) case where (5) reduces to

∇2G0 − G0 = 0, (6a)

∇2F0 − F0 = 0, (6b)

∇2H0 − H0 = −q, (6c)
Dq

Dt
= 0. (6d)

On a periodic domain (as we will consider for our numerical
experiments), (6a) and (6b) imply G0 = 0 and F0 = 0.1

The remaining two equations suggest the following algorithm
for time-stepping the dynamics of q for the Quasi-Geostraphy
case:

1) given q
2) solve (6c) for H0

3) compute u = u0 = −H0y , v = v0 = H0x.
4) use u and v to advect q.
5) repeat using new q.
Note that the operator ∇2 − 1 is particularly well-behaved

(compared to, say ∇2 + 1) for its eigenvalues are never zero.

A. First-Correction
The leading-order results tell us that the asymptotic expan-

sions for F , G and H are

F = 0 + RF1,

G = 0 + RG1,

H = H0 + RH1,

and substituting back in (5) gives us the equations for the
first-correction:

∇2G1 − G1 = H0yH0yx − H0xH0yy

= −J(H0, H0y), (8a)

∇2F1 − F1 = H0yH0xx − H0xH0xy

= −J(H0, H0x), (8b)

∇2H1 − H1 = qH0, (8c)
Dq

Dt
= 0. (8d)

Note that the equations for G1, F1, and H1 all involve the same
∇2 − 1 operator as the H0 equation from the leading order.
We thus consider the following algorithm for computing the
leading-order small-Rossby number dynamics of the potential
vorticity q:

1) given q
2) solve (6c) for H0

3) solve (8a), (8b) and (8c) for G1, F1 and H1

4) compute:

u = u0 + Ru1 = −
∂

∂y
(H0 + RH1) −RF1,

v = v0 + Rv1 =
∂

∂x
(H0 + RH1) −RG1.

1To see this, consider the 1D equation ∇2G − G = 0 with general
solution of the form G = Ae±x and note only A = 0 satisfies the boundary
conditions.

5) use u and v to advect q.
6) repeat using new q.

III. IMPLEMENTATION

The algorithms outlined above are implemented using spec-
tral methods (see for example [5]). We consider the unit square
domain with periodic boundary conditions using a uniform
discretization of Nx × Ny points.

A. Initial Conditions

We generate our initial conditions in the frequency domain
by assigning random amplitudes for any mode which satisfies
k1 ≤ ||k||2 ≤ k2 for choosen values of k1 and k2. This
assigns energy to a “ring” of wave numbers. We then compute
the IFFT of these conditions to produce initial conditions in
the spatial domain which consist of random waves of scales
ranging from k1 to k2.

B. Time-stepping

For advecting q we use second-order Adams-Bashforth:

un+1 = un +
3

2
∆tf(un) −

1

2
∆tf(un−1) (9)

Since this method is not self starting, we use 20 small steps
of Forward Euler to get to t = t1 = ∆t.

C. De-aliasing

Functions in the spectral domain are characterized by their
frequency mode, k. Discretizing x in the physical domain
limits the number of modes in the frequency domain, and
the number of allowed modes is inversely proportional to
the grid spacing. For a function sampled at intervals ∆x in
physical space, we must ensure that the grid spacing is small
enough to allow for enough modes to characterize the function.
Otherwise the high frequency modes are mapped to lower
frequency modes, which is known as aliasing.

An example of aliasing can be seen in Figure 1. Shown
are plots of cos 2x and 1

2 + 1
2 cos 4x, and the values of both

functions at intervals ∆x = π
3 . From only the function values

along grid points, the two functions are indistinguishable.
Aliasing occurs in cases like this, when a higher frequency
mode appears as a lower frequency mode.

Aliasing is does not present a significant problem in terms of
initial conditions, since an appropriate grid size can be selected
(at the so-called Nyquist rate). Where aliasing becomes an
issue however, is in multiplying two or more well-sampled
terms.

Consider another example, this time of cos 2x cos 2x. While
a grid size of ∆x = π

3 properly resolves cos 2x, the product
cos 2x cos 2x = 1

2+ 1
2 cos 4x is affected by aliasing. The higher

mode, cos 4x is mapped to a lower mode, cos 2x (as seen in
Figure 1).
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Fig. 1. An example of aliasing: sampling these two functions on an grid
with spacing π

3
results in the same discrete signal.

In general, multiplication in physical space is equivalent to
convolution in frequency space, and can be written as:

ujvj =

N

2
−1∑

k1=−

N

2

ûk1
e

i2π

N
jk1

N

2
−1∑

k2=−

N

2

v̂k2
e

i2π

N
jk2

=

N

2
−1∑

k1=−

N

2

N

2
−1∑

k2=−

N

2

ûk1
v̂k2

e
i2π

N
j(k1+k2) (10)

Therefore, when u and v are discretized to N modes, their
product contains 2N modes. Furthermore,

e
i2π

N
j(k1+k2) = e

i2π

N
j(k1+k2+N) (11)

so modes where |k1 +k2| > N
2 are aliased to the k1 +k2−N

mode.
To resolve this problem, we can anticipate the creation of

additional modes when multiplying. By increasing the number
of frequency modes prior to multiplication, the computation
becomes more expensive, but the higher modes are not aliased.
For each multiplication we need to determine how many
frequency modes to include, N2, where max(k1 +k2)−N2 >
N
2 . In the case of two-term multiplication on equal grids,
N2 = 3

2N .
This process is known as de-aliasing. To implement de-

aliasing, we wrote the function padAndMult, which takes
two functions in the frequency domain as inputs, and re-
turns their product in frequency domain without aliased wave
modes.

The pseudocode for padAndMult is:

1) given inputs â and b̂.
2) add N

4 zeros to either end of the input functions, for a
total of 3

2N modes. This is called zero padding.
3) multiply the zero-padded functions. This is done as ĉ =

fft(ifft(â)ifft(b̂)
4) truncate N

4 values from either end of the result, remov-
ing the higher frequencies.

5) return the truncated ĉ
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Fig. 2. Spectum plots for QG, N = 128, for various artificial diffusion
terms. No artificial diffusion (top-left); 2nd-order diffusion, µ = 1×10−5

(top-right); 8th-order diffusion, µ = 10−15 (bottom-left); 8th-order diffusion,
µ = 10−19 (bottom-right). In each case, the solid vertical line indicates the
grid scale.

D. Artificial diffusion

We add an artificial diffusion term to (6d) and (8d), replac-
ing them with

Dq

Dt
= −µ(∇2)4q. (12)

This helps stabilize our numerical method by damping out
high frequency modes that are close to the “grid scale”, that
is, those that have wavelengths close to ∆x or ∆y. In the
absence of an artificial diffusion term, energy is transferred to
these grid scale modes through a spectral cascade.

The parameter µ > 0 needs to be chosen so that the damping
“turns on” near the grid scale and damps out the appropriate
modes without significantly damping features on the smaller
(physical) scales. The choice of µ depends on ∆x, ∆y, and
presumably R in the first correction case.

Figure 2 shows spectrum plots of amplitudes versus wave
number magnitudes for various artificial diffusion terms.

E. Integrating factor

The introduction of artificial diffusion imposes a strict
timestep restriction for explicit methods. Using an integrating
factor, we alleviate this restriction by incorporating the exact
solution to the linear terms. Consider the advection equation
with artificial diffusion added.

qt + uqx + vqy = −µ(∇2)4q.

Taking the Fourier transform, we get:

q̂t + ûqx + v̂qy = −µ ̂((∇2)4q),

q̂t + ûqx + v̂qy = −µ(k8 + j8)q̂.

Since we know the solution to the linear equation, we can
reduce the two linear terms to one term by multiplying the
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equation by e−µ(k8+j8)t:

q̂te
−µ(k8+j8)t − µ(k8 + j8)q̂e−µ(k8+j8)t

= −(ûqx + v̂qy)e−µ(k8+j8)t,

(q̂e−µ(k8+j8)t)t = −(ûqx + v̂qy)e−µ(k8+j8)t.

Letting RHS = −(ûqx + v̂qy) and m = µ(k8 + j8), we get:

(q̂e−mt)t = RHSe−mt.

Solving for q̂ using Forward Euler:

q̂n+1e
−m(t+∆t) = q̂ne−mt + ∆tRHSne−mt,

q̂n+1 = q̂nem∆t + ∆tRHSnem∆t,

and similarly using Adams-Bashforth

q̂n+1 = q̂nem∆t +
3∆t

2

[
RHSnem∆t

]

−
∆t

2

[
RHSn−1e

2m∆t
]
.

We can define the time independent integrating factors: I1 =
em∆t and I2 = e2m∆t. These can be computed once initially
and stored for use at each timestep.

F. Pseudocode

The pseudo-code for the quasi-geostraphy case is:
1) compute q̂, the FFT of q.
2) solve (6c): Ĥ0 = −q̂/(−1 − k2 − l2).
3) compute q̂x, q̂y , Ĥ0x, Ĥ0y and ̂(∇2)4q.
4) compute û and v̂.
5) compute q̂xu and q̂yv using the de-aliasing

padAndMult (note this involves FFT and IFFT
calls).

6) timestep ∂q̂
∂t

= −q̂xu− q̂yv−µ ̂(∇2)4 using the integrat-
ing factors and Adams-Bashforth to obtain a new q̂.

7) return to step 2.
The pseudo-code for the first correction case is:
1) compute q̂, the FFT of q.
2) solve (6c): Ĥ0 = −q̂/(−1 − k2 − l2).
3) compute Ĥ0x, Ĥ0y Ĥ0xx, Ĥ0yy, Ĥ0xy , q̂x, q̂y , and

̂(∇2)4q.
4) compute the products on the right hand sides of (8a) and

(8b) using padAndMult.
5) solve (8a), (8b), and (8c) for Ĝ1, F̂1, and Ĥ1.
6) compute û and v̂ from above quantities.
7) compute q̂xu and q̂yv using padAndMult.
8) timestep ∂q̂

∂t
= −q̂xu− q̂yv−µ ̂(∇2)4 using the integrat-

ing factors and Adams-Bashforth to obtain a new q̂.
9) return to step 2.
The code are written in matlab using fft2 and ifft2

for computing the FFTs.

IV. RESULTS

A. Time convergence test

Figure 3 shows the results of a time convergence test. In
lieu of an exact solution we compute a solution with much
smaller time steps and approximate errors against that. Note
that our code appears to be second-order in time.
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Fig. 3. Time convergence test. Initial conditions (top-left); Example results
at t = 20 (top-right); loglog convergence plot (bottom). Error is approximated
in the l2 norm against a solution computed with the smaller stepsize of ∆t =

.025.

B. Spatial convergence test

Figure 4 shows two the results of using two different
resolutions with the same initial conditions. In case each case,
µ is chosen as small as possible while still stabilizing the
calculations.

The results appear to be similar but not identical; this
suggests that modes near grid scale in the N = 256 case
may contribute to the dynamics for these initial conditions. A
computation with N = 1024 should be performed to see if
the N = 512 computation is sufficiently resolved.

C. QG and first correction comparison

Figure 5 shows the results of running both the QG and the
first correction code with R = 0.2 until t = 1000. For small
times the results appear almost identical but at t = 1000 the
results, while showing similar features, are not identical. In
both the QG and first correction cases, we note, as in [2] and
[1], the formation of coherent structures.

V. CONCLUSIONS AND FUTURE WORK

We have successfully implemented a spectral code to com-
pute the vorticity dynamics of the shallow water equations
to leading order and small Rossby first correction. The code
produces vorticity dynamics which appear consistent with
previous results, particularly in the development of coherent
structures.

One possible application of this code is to investigate the
breakdown in symmetry between cyclones and anticyclones
between statistically symmetric initial conditions (as seen in
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[2] for the density stratified case). This will require careful
exploration of initial conditions and parameters.
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(a) IC (t = 0): QG, N = 256, µ = 10−20 (b) IC (t = 0): QG, N = 512, µ = 10−21

(c) t = 200: N = 256 (d) t = 200: N = 512

Fig. 4. Results of spatial convergence test. Note results are fairly similar although not identical.
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(a) IC (t = 0) (b) t = 200: QG or first correction (results appear similar)

(c) QG, t = 1000 (d) First correction, t = 1000

Fig. 5. Results of QG and first-correction runs for longer times. N = 512, R = 0.2.


