Modifying Images and Sounds using the Mathematics of Fourier Transforms

Colin Macdonald

www.math.sfu.ca/~cbm

Image processing demo code is based on code by Dr. Dave Muraki

Sine functions

Sine functions

$$f(x) = a\sin(k \cdot 2\pi x)$$

lacktriangle Increasing the "wavenumber" k:

• Changing the amplitude *a*:

Decomposing a function

Can express many functions as a sum of various sine functions:

• (k = 1, a = 1) and $(k = 10, a = \frac{1}{2})$.

Decomposing a function

Another example:

$$(k = 1, a = 1),$$

$$(k = 3, a = \frac{1}{3}),$$

$$(k = 5, a = \frac{1}{5}),$$

$$(k = 7, a = \frac{1}{7}),$$

$$(k = 9, a = \frac{1}{9}),$$

$$(k = 11, a = \frac{1}{11}).$$

Reconstruction

- Give amplitude and frequency information: "(k = 1, a = 1), $(k = 3, a = \frac{1}{3}), \dots$ "
- Reconstruction:

$$f(x) = (1)\sin(1\cdot 2\pi x) + \left(\frac{1}{3}\right)\sin(3\cdot 2\pi x) + \left(\frac{1}{5}\right)\sin(5\cdot 2\pi x) + \dots$$

$$(k = 1, a = 1),$$

$$(k = 3, a = \frac{1}{3}),$$

$$(k = 5, a = \frac{1}{5}),$$

$$(k = 7, a = \frac{1}{7}),$$

$$(k = 9, a = \frac{1}{9}),$$

$$(k = 11, a = \frac{1}{11})$$

$$(k = 11, a = \frac{1}{11})$$

Demo – decomposing into sine waves

Decomposition/Reconstruction seems hard...

- Difficult with three wavenumbers. But 1 second of CD audio has 44000 possible wavenumbers!
- Use student labour?

Decomposition/Reconstruction seems hard...

- Difficult with three wavenumbers. But 1 second of CD audio has 44000 possible wavenumbers!
- Use student labour? Not reliable enough:

Calculus can provide a solution.

The Fourier transform

- lacktriangle Fourier Transform decomposes f(x) into amplitude and frequency (wavenumber) information.
- $lue{}$ Transforms f(x) into a(k).
- ullet Transforms functions of space x into functions of wavenumber k.

The Fourier transform

- Fourier Transform decomposes f(x) into amplitude and frequency (wavenumber) information.
- $lue{}$ Transforms f(x) into a(k).
- ullet Transforms functions of space x into functions of wavenumber k.
- Warning! more equations:

$$a(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i2\pi kx} dx$$

discrete case:

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n e^{-i2\pi kn/N}$$

Understanding is more important than equations!

The inverse Fourier transform

- lacktriangle Inverse Fourier Transform recovers f(x) from amplitude and frequency (wavenumber) information.
- lacktriangle Transforms a(k) into f(x).
- $lue{}$ Transforms functions of wavenumber k into functions of space x.

The inverse Fourier transform

- Inverse Fourier Transform recovers f(x) from amplitude and frequency (wavenumber) information.
- lacktriangle Transforms a(k) into f(x).
- $lue{}$ Transforms functions of wavenumber k into functions of space x.
- The gory details:

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} a(k)e^{i2\pi kx}dk$$

discrete case:

$$f_n = \sum_{n=0}^{N-1} a_k e^{i2\pi kn/N}$$

Fourier transform summary

"... as if functions circulated at ground level and their transforms in the underworld" [Bracewell, 1965]

Audio signals and Fourier transforms

Sound is pressure against your ears changing in time:

Time domain \iff frequency domain.

Fourier transforms for music

Visualization:

"Bass Boost": ightarrow Increase "small k" freq. \mid

Fourier transform for images

Images are 2-D

lacktriangle Transform f(x,y) into a(k,l). Horizontal wavenumber k and vertical wavenumber l.

Fourier transform for images

Image compression

Demo

Exercises

Can you draw a Fourier coefficient mask to produce the following?

Solutions to exercises

