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We investigate a three-component system involving
the Belousov–Zhabotinsky reaction in water-in-
oil microemulsions. Our goal is to investigate
the connection between homoclinic snaking and
semi-strength interaction in a three-variable reaction–
diffusion system. A two-parameter bifurcation
diagram of homogeneous, periodic and localized
patterns is obtained numerically, and a natural
asymptotic scaling for semi-strong interaction theory
is found where an activator source term a = O(δ1)
and b = O(δ1), with δ1 � 1 being the diffusion ratio.
Under this regime, singular perturbation techniques
are used to construct localized steady-state patterns,
and new types of non-local eigenvalue problems
(NLEP) are derived to determine the stability of these
patterns to O(1) time-scale instabilities. We extend the
scope of the NLEP by considering a general scenario
where both time-scaling parameters are non-zero. All
analytical results are found to agree with numerics.
Further numerical results are presented on the
location of various types of breathing Hopf instability
for localized patterns.

1. Introduction
Oscillatory processes are ubiquitous in living systems,
making them a fundamental aspect of biological

2024 The Author(s) Published by the Royal Society. All rights reserved.
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phenomena. Consequently, physical chemists have long championed the idea that chemical
oscillators can be used for understanding biological oscillators [1]. A well-known chemical system
is the Belousov–Zhabotinsky reaction (BZ), which involves the periodic oxidation of malonic
acid by bromate in an acidic aqueous solution. It has been widely used as a model to study the
emergence and behaviour of self-organizing systems that are of great biological significance.

In order to provide the best analogues to living cells, it is essential to investigate chemical
oscillators within microheterogeneous environments rather than homogeneous ones. One
particular type of such media is obtained by dispersing nanosized water droplets, each
surrounded by a surfactant monolayer, into a continuous oil (octane) phase. A widely studied
water-in-oil microemulsion uses the surfactant Aerosol OT, a.k.a sodium bis(2-ethylhexyl)-sulfo-
succinate. The resulting media is known as the AOT microemulsion. An attractive feature of this
system is that its microstructure can be tuned by changing the concentration and size of the water
droplets [2].

The BZ reaction in water-in-oil microemulsions (BZ-AOT systems) has been extensively
studied and has revealed a remarkable abundance of diverse waves and patterns [3,4]. In
[5], Yang et al. investigated two models for the BZ reaction in an AOT microemulsion (BZ-
AOT system). These models extend the standard Brusselator [6] and Oregonator [7] models by
allowing the activator species to reversibly transform into an unreactive rapidly diffusing species.
The introduction of a rapidly diffusing activator allows the extended system to exhibit wave
instabilities. Yang et al. [5] show that the interaction of the stationary Turing and wave (oscillatory
Turing) instabilities leads to a large variety of spatio-temporal patterns.

In this paper, we consider the extended Brusselator model for the BZ-AOT system proposed
by Yang et al. [5], which takes the form

∂u
∂t

= a − (b + 1)u + u2v − cu + dw + δ1
∂2u
∂x2 , x ∈ (−l, l), t> 0, (1.1a)

∂v

∂t
= bu − u2v + ∂2v

∂x2 , x ∈ (−l, l), t> 0 (1.1b)

and
∂w
∂t

= cu − dw + δ2
∂2w
∂x2 , x ∈ (−l, l), t> 0, (1.1c)

with boundary conditions

ux|∂Ω = vx|∂Ω = wx|x=∂Ω = 0.

Here, u, v and w are dimensionless variables representing the activator, inhibitor and unreactive
species, respectively. The dimensionless parameters δ1 > 0, δ2 > 0 measures the ratio of the
diffusion rate of the activator u to that of the inhibitor v and the ratio of the diffusion rate
of the unreactive w to that of the inhibitor v. In what follows, we shall be interested in the
case that δ2 = δ2

1 and in the limit of an infinitely long domain l → ∞, while the parameters a,
b, c and d are positive constants. In recent years, there has been a growing interest in studying
the formation and dynamics of spatially localized patterns in reaction–diffusion systems. One
particularly fascinating phenomenon in this field is known as homoclinic snaking, which gives
rise to the emergence of localized states with arbitrarily wide spatial extent within the Pomeau
pinning region. This phenomenon has been observed in various physical systems, including
shear flows [8], fluid convection [9], neurons [10], water waves [11] and reaction–diffusion
systems [12].

Furthermore, there has also been a recent focus on the generation of spike patterns in reaction–
diffusion systems through the application of semi-strong interaction theory on infinite domains.
Additionally, researchers have been focusing on assessing the stability of spike patterns using
the non-local eigenvalue problem (NLEP). While the NLEP analysis has been applied to various
three-component systems like the three-component Schnakenberg model [13], the urban crime
model [14,15] and the extended vegetation model [16], most studies have only considered the
impact of a single time-scaling parameter.
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In this paper, we aim to expand upon our previous work by integrating homoclinic snaking
theory and semi-strong interaction theory within a reaction–diffusion system that involves three
components in one spatial dimension. Moreover, we extend the scope of the NLEP by considering
a more general scenario where both time-scaling parameters, denoted as τ and θ , are positive (see
equation (4.1)). This extended analysis necessitates new investigative approaches. To accomplish
this, we re-investigate the extended Brusselator model (1.1).

The rest of the paper is organized as follows. Section 2 presents the linear stability analysis
results of the system under investigation. In addition, a numerical overview is provided,
highlighting the regions where periodic and localized patterns are observed. Building upon the
linear stability analysis, §3 applies asymptotic analysis on a finite domain to construct spike
patterns. This section also explores patterns when the domain size becomes infinite.

In §4, the stability of single-spike patterns is studied. This is accomplished by deriving a NLEP.
To obtain a more general stability result of the NLEP, two parameters τ and θ are introduced as
seen in equation (4.1). These parameters are associated with the timescales of the variables v and
w. The complex behaviours of the NLEP are investigated by varying these parameters, offering
insights into the dynamics of the system.

In §5, numerical results are presented on the location of various types of breathing Hopf
instability for localized patterns. Finally, §6 draws conclusions and identifies the broader
implications of the study.

2. Preliminaries
In this section, we investigate the linear stability of the homogeneous state in the system (1.1). By
setting ut = vt = wt = 0, system (1.1) admits a unique homogeneous steady state

(us, vs, ws) =
(

a,
b
a

,
ac
d

)
.

Now we investigate two of the main types of symmetry breaking bifurcation that can occur
when the homogeneous steady-state loses stability, namely the Hopf bifurcation and the Turing
instability bifurcation, which are responsible for the emergence of spatio-temporal patterns. To
determine the conditions under which such bifurcations may occur, we carry out the linear
stability analysis. The analysis is conducted by introducing new variables

(u, v, w) = (us, vs, ws) + (U, V, W), (2.1)

and assuming an ansatz that

(U, V, W) = (Ū, V̄, W̄)eikx+λt + c.c, ||(Ū, V̄, W̄)|| � 1, (2.2)

where k and λ indicate the wavenumber of the pattern and the rate of growth perturbation in
time, respectively. By substituting (2.1) and (2.2) into (1.1), and ignoring the nonlinear terms, we
obtain a linearized system which has the following characteristic equation:

|J − k2D − λI| = 0. (2.3)

Here, J is the Jacobian matrix, D = diag(δ1, 1, δ2
1) and I stands for the identity matrix.

Hopf bifurcation transforms a stationary steady state into spatially stationary and temporally
periodic oscillations. This phenomenon arises when the following conditions are satisfied:

�(λ(k)) �= 0, �(λ(k)) = 0, k = 0. (2.4)

The homogeneous steady-state solution of (1.1) loses stability at a spatial instability bifurcation
to give solutions that are periodic in space but uniform in time when the following critical
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Figure 1. (a) Plane of (b,d) with δ1 = 0.01, c = 0.2 and d = 1, here the green indicates localized structures region, the red
curve is Belyakov–Devaney (BD) transition and the green curve presents Turing instability. The black circle indicates the location
of the codimension two point. (b) Bifurcation diagram shows the snaking ladder structure and samples of localized solution
that are marks in the snaking with fixing a= 1.7 as b varies. The continuous (dashed) line indicates stable (unstable) solutions
where the blue (red) line is the odd (even) solution branch. (c) The one parameter continuation along b in the spike region with
fixing a= 0.744. The panel to the right shows example from the upper and lower branch indicated by light blue andmagenta,
respectively.

conditions are satisfied [17]:

�(λ(k))|kc = 0 and ∂k�(λ(k))|kc = 0. (2.5)

The value of the wavenumber (k) at which these conditions holds (k = kc) is known as the
critical value of the wavenumber.

Figure 1a shows the results of the linear stability analysis of (1.1) in the (a, b)-plane for
fixed c, d and δ values of 0.2, 1 and 0.01, respectively. The green curve represents the critical
Turing instability curve with a critical wavenumber greater than zero (kc > 0). Hopf bifurcation
of a homogeneous steady state (Hopf HSS) (black curve) divides the Turing region into two
subregions, the stable Turing region (above) and the unstable Turing Hopf region (below).

The red curve in the figure represents another linear transition which is the Belyakov–Deveney
(BD) transition, which occurs when the critical wavenumber is negative (kc < 0). In the context of
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spatial dynamics, [18] observes that this transition occurs when there is a pair of double real
eigenvalues of a problem of (1.1).

Figure 1a also shows a codimension-2 point (shown as the black circle in the figure) which
is obtained through weakly nonlinear analysis (details not included). Upon reaching this point,
the Turing bifurcation shifts from subcritical to supercritical bifurcation. In the case of a> 2, the
Turing bifurcation bifurcates supercritically as b increases, while it bifurcates subcritically for a<
2, as b decreases. Subcritical folds of periodic structures form a pinning region in the subcritical
region where localized patterns can be observed. In our numerical calculations, we define the
domain as Ω = (−lx, lx) where lx = 100. We represent the norm using the following expressions:

L2 norm :=
√√√√ 1

2lx

∫ lx

−lx

4∑
i=1

(ui(x))2 dx (for steady states) (2.6)

||u||2 :=
√

1
2Tlx

∫T

0

∫ lx

−lx
|u(x, t)|2 dx dt (for time-periodic states). (2.7)

Here, we are only considering the first component, subtracting u∗ (meaning that ||u||2 is not
strictly a norm), and normalizing by both the domain size and, when dealing with time-periodic
orbits, the period T.

By using AUTO, we obtain the localized patterns region, which can be seen as a blue envelope
in figure 1a. This region is further divided into two subregions by the BD transition curve.
Typically, the region to the right of the BD curve is where system (1.1) has spatially complex
eigenvalues and localized pattern solutions that display an oscillation tail known as the sinking
region. To the left of the BD curve, system (1.1) exhibits pure real eigenvalues and the localized
pattern solution displays a montonic tail, which is also known as a spike region.

Figure 1b,c illustrates one parameter continuations from the snaking and spike regions,
respectively. Figure 1b represents the standard homoclinic snake, which is composed of two
intertwined branches of the localized patterns. The figure also illustrates the stability of each
branch of the snaking diagram, which are determined numerically by using PDE2PATH [19,20].
The subplots are also used to show examples of localized pattern solutions at marked points in
the snaking diagram.

Figure 1c illustrates a single fold that connects a stable branch to an unstable branch through
a fold with examples from each branch plotted separately. Specifically, we note that the solution
from the single fold has highly localized spikes in u and w, but is more dispersed in v. This
observation suggests that the semi-strong asymptotic analysis may be used to effectively predict
the solutions in the subplots of figure 1c. Recent studies have shown how to find the spike solution
for a two-component model by using strong asymptotic analysis; in this study, we seek to extend
the approach to a three-component model.

3. Semi-strong interaction asymptotic analysis
The procedure that we apply to find the spike equilibrium solution using asymptotic
approximation is similar to that used in [21,22]. The first step is considering the steady-state
system of (1.1)

a − (b + 1)u + u2v − cu + dw + δ1
∂2u
∂x2 = 0, (3.1a)

bu − u2v + ∂2v

∂x2 = 0 (3.1b)

and cu − dw + δ2
1
∂2w
∂x2 = 0, (3.1c)

subject to Neumman boundary conditions ux(±l) = vx(±l) = wx(±l) = 0. Our focus is on the case
in which l → ∞. At this point, we shall seek a solution for (3.1) which is homoclinic in space to
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the homogeneous steady state

u → a, v→ b
a

, w → ac
d

as x → ±l.

We are interested in small values of the parameters to be able to apply semi-strong interaction
asymptotic. Therefore, we introduce a new scale for a and b as following

a = δ1α, b = δ1β with δ1 � 1.

Substituting the above scale in the steady-state problem we gain the following system:

δ1α − (δ1β + 1)u + u2v − cu + dw + δ1
∂2u
∂x2 = 0, (3.2a)

δ1βu − u2v + ∂2v

∂x2 = 0 (3.2b)

and cu − dw + δ2
1
∂2w
∂x2 = 0. (3.2c)

In the limit δ1 → 0, we apply the matched asymptotic expansions to construct a single spike
equilibrium centred at x = 0 of the system (3.2).

(a) Inner solution
As a starting point, we introduce a new inner spatial coordinate

x =
√

δ1

1 + δ1β
y. (3.3)

Note that in the limit δ1 → 0, both a = δ1α� 1 and b = δ1β � 1 in (3.2a) and can be ignored to
leading order. However, due to the fact that the localized structure region could admit slightly
large b while keeping a small (see the lower left corner of the localized region of figure 1a), in this
section, we choose to keep the δ1β term for better approximation of the steady state, so that the
result is still accurate even if δ1β is not too small. This result will be used in the later §4(e) to be
verified with numerical results. After collecting the leading order terms of system (3.2), we obtain
the following system:

uyy − u + u2v

1 + δ1β
= 0, (3.4a)

vyy = 0, −∞< y<∞ (3.4b)

and w = cu
d

. (3.4c)

We first solve the v-equation (3.4b). In order to match an outer solution, we require that v(y) is
bounded as |y| → ∞. In this way, we obtain that v(y) = v(0) = κ is a constant independent of y in
the inner region. Then, from the u-equation, we let

u = 1 + δ1β

κ
uc(y), (3.5)

where uc(y) satisfies
uc

′′ − uc + u2
c = 0, −∞< y<∞ (3.6a)

and
uc → 0 as y → ±∞; u′

c(0) = 0, uc(0)> 0. (3.6b)

The solution to (3.6) is

uc(y) = 3
2

sech2
(y

2

)
. (3.7)
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Hence,

w(y) = 3c(1 + δ1β)
2dκ

sech2
(y

2

)
. (3.8)

(b) Outer solution
To determine the constant κ , we consider the outer region, which is defined away from
O(
√
δ1/(1 + δ1β)) regions near x = 0. First, we introduce new variables given as

u = δ1û, v= v̂, w = δ1ŵ, x = z
δ1

. (3.9)

Once we introduce (3.9) into (3.2) we find that, to leading order,

û(z) = α

1 + δ1β
, v̂zz − û2v̂ + βû = 0, and ŵ(z) = cû(z)

d
.

Note that û can be approximated as a multiple of delta functions due to the fact that it is
localized near x = 0. To solve the outer solution for v̂, we integrate the v̂-equation over (0−, 0+) to
obtain the following jump condition, where (0−, 0+) is defined as a small interval that is slightly
larger than the inner region:

S := v̂z(0+) − v̂z(0−) =
∫ 0+

0−
û2v̂ dz − β

∫ 0+

0−
û dz

= 6
κ

√
1 + δ1β√
δ1

.

Here, we have used the fact that
∫∞

−∞ uc(y)dy = ∫∞
−∞ u2

c (y)dy = 6. Then in outer region v̂ satisfies

v̂zz + αβ

1 + δ1β
− α2

(1 + δ1β)2 v̂ = Sδ(z),

v̂z(0+) − v̂z(0−) = S

and v̂z(±δ1l) = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.10)

To solve system (3.10), we introduce Green’s function G(z) which satisfies

(1 + δ1β)2

α2 Gzz − G = −δ(z)

and Gz(±δ1l) = 0.

⎫⎪⎬
⎪⎭ (3.11)

A simple calculation gives

G(z) = α

2(1 + δ1β)
cosh((α/(1 + δ1β))(δ1l − |z|))

sinh((cα/(1 + δ1β))δ1l)
. (3.12)

The solution to (3.10) is then given by

v̂(z) = β(1 + δ1β)
α

− S(1 + δ1β)2

α2 G(z)

= β(1 + δ1β)
α

− 3(1 + δ1β)3/2

κα
√
δ1

cosh((α/(1 + δ1β))(δ1l − |z|))
sinh((α/(1 + δ1β))δ1l)

, (3.13)

where κ is to be determined.
Note that in the large domain case where l → ∞, (3.13) can be simplified as

v̂(z) = β(1 + δ1β)
α

− 3(1 + δ1β)3/2

κα
√
δ1

e−(α/(1+δ1β))|z|. (3.14)
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(c) Matching
To determine κ we match inner with outer solutions and take z = 0 in equation (3.13) to obtain the
following quadratic equation:

κ2 − β(1 + δ1β)
α

κ + 3(1 + δ1β)3/2

α
√
δ1 tanh((α/(1 + δ1β))δ1l)

= 0. (3.15)

The equation has two solutions when the discriminant �= β2(1 + δ1β)2/α2 − (12(1 + δ1β)3/2/

(α
√
δ1 tanh((α/(1 + δ1β))δ1l))> 0,

κ± = β(1 + δ1β)
2α

±
√
β2(1 + δ1β)2

4α2 − 3(1 + δ1β)3/2

α
√
δ1 tanh((α/(1 + δ1β))δ1l)

. (3.16)

It has a fold point that occurs when �= 0:

√
1 + δ1β

√
δ1 tanh

(
α

1 + δ1β
δ1l
)
β2 = 12α. (3.17)

We now summarize the results for one-spike steady states as follows:

Result 3.1. In the limit δ1 → 0, system (3.2) admits a one-spike steady-state solution centred at
x = 0, the steady state is given by

ue ∼ 1 + δ1β

κ
uc

(√
1 + δ1β√
δ1

x
)

, if x =O
( √

δ1√
1 + δ1β

)
; ue ∼ δ1α

1 + δ1β
otherwise, (3.18a)

ve ∼ β(1 + δ1β)
α

− 3(1 + δ1β)3/2

κα
√
δ1

cosh((δ1α/(1 + δ1β))(l − |x|))
sinh((α/(1 + δ1β))δ1l)

(3.18b)

and we ∼ c
d

ue, (3.18c)

where κ satisfies the quadratic equation (3.15). Here, uc(y) = (3/2)sech2(y/2) is the homoclinic
solution of (3.6).

In the large domain case where l → ∞, tanh((α/(1 + δ1β))δ1l) → 1, to leading order (3.15)
reduces to

κ2 − β

α
κ + 3

α
√
δ1

= 0, (3.19)

which can be written as the following in terms of the original parameters a, b:

aκ2 − bκ + 3
√
δ1 = 0. (3.20)

We then use the regular perturbation analysis to write the approximation of the two roots in terms
of original parameters a, b

κ1 ≈ 3
√
δ1

b
+ 9aδ1

b3 (3.21a)

and

κ2 ≈ b
a

− 3
√
δ1

b
. (3.21b)

Here, the above two values of κ are corresponding to the value of κ in the upper branch (κ1) and
the lower branch (κ2). Moreover, the discriminant of (3.20) which is given as

b2 − 12 a
√
δ1 = 0, (3.22)

provides the curve of the localized structure in the spike region. In the panel in figure 2, we
compare the curve that is obtained from (3.22) (red dashed) with the curve obtained from AUTO
(solid blue) for the spike region.

Figure 3 compares the solution obtained by the semi-strong analysis with a numerical solution
obtained by AUTO. It shows that the analysis result has a good agreement with the numerical
solutions.
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Figure 2. Zoomof the spike region of (1.1) forδ1 = 0.01. The analytical approximation of the fold bifurcation of the spike region
is represented by the red dashed lines, while numerical computation by AUTO is represented by solid blue lines.

4. Stability analysis of single spike solutions
We now study the stability of one-spike equilibrium solutions to (3.2). We will start by considering
a more general case where it is assumed that the timescales of the three fields could be different.
In particular, two reaction-time scaling parameters θ , τ are added in front of vt, wt, respectively,
so that system (3.2) becomes

ut = δ1
∂2u
∂x2 + u2v − cu + dw + δ1α − (δ1β + 1)u,

θvt = ∂2v

∂x2 − u2v + δ1βu

and τwt = δ2
1
∂2w
∂x2 + cu − dw.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

Firstly, upon introducing the perturbation around the steady state

u(x, t) = ue(x) + φ(x) eλt,

v(x, t) = ve(x) + ψ(x) eλt

and w(x, t) = we(x) + ξ (x) eλt,

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

where |φ|, |ψ |, |ξ | � 1, we obtain the following linearized eigenvalue problem for φ,ψ and ξ

λφ = δ1φxx + 2ueveφ + u2
eψ − cφ + dξ − (δ1β + 1)φ,

θλψ =ψxx − 2ueveφ − u2
eψ + δ1βφ

and τλξ = δ2
1ξxx + cφ − dξ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

with Neumann boundary conditions on the finite domain (−l, l).
The spectrum of (4.3) contains two classes of eigenvalues. There are ‘large’ eigenvalues that

are O(1) and ‘small’ eigenvalues that approach 0 as δ1 → 0. As one-spike equilibrium is stable
with respect to small eigenvalues (see [23,24] for more details), in this section, we will analyse the
‘large’ O(1) eigenvalues in the spectrum of the linearization.

In the limit δ1 → 0, the effect of the higher order term δ1β in this section will not be considered
when solving the eigenvalue problem (4.3). Then to leading order the steady state ue, ve and we is
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Figure 3. A comparison of the approximation solution which obtained by the semi-strong analysis with the full numerical
solution from AUTO for the upper and lower branch for a= 0.02, b= 0.2, c = 0.2, d = 1, δ1 = 0.01 and L= 1000. (a–c): the
solution of u, w and v for the stable branch, respectively, with κ = 1.725 obtained from (3.21a). In (a,b,d,e), the green and
blue continuous lines represent the inner and the outer solution, respectively, and the red (black) dashed line indicates the
asymptomatic (numerical) solution. (d–f ): The approximate and the numerical solution of u,w andv in the unstable branch is
shown with κ = 8.5 obtained from (3.21b), respectively, where the colour code is similar to that in the stable branch.

given as below

ue ∼ 1
κ

uc

(
x√
δ1

)
, if x =O

(√
δ1

)
; ue ∼ δ1α otherwise,

ve ∼ β

α
− 3
κα

√
δ1

cosh(δ1α(l − |x|))
sinh(αδ1l)

and we ∼ c
d

ue,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)
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where κ satisfies

κ2 − β

α
κ + 3

α
√
δ1 tanh(αδ1l)

= 0. (4.5)

The asymptotic analysis as δ1 → 0 proceeds as follows. In the inner region, we introduce an
inner variable y = x/

√
δ1, then to leading order we obtain ψyy = 0. Imposing Neumann boundary

conditions, we get ψ ∼ψ0 is a constant that is to be determined. Moreover, collecting leading
orders in the ξ -equation, we obtain that τλξ = cφ − dξ , which yields

ξ = c
τλ+ d

φ. (4.6)

Then using (4.6) to remove ξ yields the following equation for φ:

λ

(
1 + τc

τλ+ d

)
φ = φyy + 2ucφ − φ + u2

c

κ2ψ0. (4.7)

To compute the constant ψ0, we look at the outer region. Since in the outer region, the localized
spike can be approximated as a multiple of delta functions, so ψ satisfies

ψxx − θλψ − δ2
1α

2ψ = cδ(x; 0), (4.8)

where

c = 2
∫ 0+

0−
ueveφ dx +

∫ 0+

0−
u2

eψ dx −
∫ 0+

0−
δ1βφ dx

∼ 2
√
δ1

∫∞

−∞
ucφ dy + 6

√
δ1

k2 ψ0 + O(δ3/2
1 ). (4.9)

Here, (0−, 0+) is defined as a small interval that is slightly larger than the inner region, and we
have used the fact that

∫0+
0− u2

eψdx = √
δ1ψ0

∫∞
−∞ u2

e dy =ψ0(
√
δ1/κ

2)
∫∞

−∞ u2
c dy = (6

√
δ1/k2)ψ0. We

then write the solution to (4.8) in terms of Green’s function as follows:

ψ = cG(x;μ), μ :=
√
θλ+ δ2

1α
2, (4.10)

where G(x;μ) is Green’s function which satisfies

Gxx − μ2G = δ(x; 0)

and Gx(±l) = 0,

}
(4.11)

and the solution is

G(x;μ) = − 1
2μ sinh(μl)

cosh(μ(|x| − l)). (4.12)

Therefore, the solution to (4.8) is

ψ(x) = − c
2μ sinh(μl)

cosh(μ(|x| − l)), (4.13)

where c and μ are given in (4.9) and (4.10), respectively. Then we determine ψ0 by taking x = 0 in
(4.13) and we obtain

ψ0 =ψ(0) = −
√
δ1

∫
ucφdy + 3

√
δ1

k2 ψ0√
θλ+ δ2

1α
2 tanh(

√
θλ+ δ2

1α
2l)

, (4.14)

which yields

ψ0 = −
√
δ1

∫
φuc dy

(3
√
δ1/κ2) +

√
θλ+ δ2

1α
2 tanh(

√
θλ+ δ2

1α
2l)

. (4.15)

Eventually, substituting (4.15) into (4.7) yields the following NLEP for φ:

λ

(
1 + τc

τλ+ d

)
φ = φyy − φ + 2ucφ − u2

c

∫
φucdy

A
, (4.16)
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where we used the simplified notation
∫

fdy := ∫∞
−∞ fdy and

A = 3 +
√
θλ

δ1
+ δ1α2 tanh

(
l
√
θλ+ δ2

1α
2
)
κ2. (4.17)

We take τ and θ as bifurcation parameters to investigate their influence on stability. To make this,
we consider the following different cases depending on the value of θ and τ : (1) τ = θ = 0; (2)
τ > 0, θ = 0; (3) τ = 0, θ > 0; (4) τ > 0, θ > 0. The stability results in the two cases with τ = 0 have
essentially the same structure as the NLEP studied in [21]. The other two cases are new results.
Here, we will look at all cases for completeness.

(a) Case 1: θ = 0, τ = 0.
We first consider the simplest case and take θ = 0, τ = 0, so that equation (4.16) reduces to the
following well-known NLEP:

λφ = L0φ − u2
c

∫
φucdy

A
and A = 3 +

√
δ1α tanh(δ1αl)κ2, (4.18)

in which L0φ ≡ φyy − φ + 2ucφ. This NLEP is first studied in [25]. It has the following basic result:

Theorem 4.1 (See [25]). Consider the problem (4.18), let λ be an eigenvalue with largest real part that
corresponds to an eigenfunction φ.

(i) If A> 6, then there exists λ with λ> 0.
(ii) If A< 6, then either Re(λ)< 0 or λ= 0 with the corresponding eigenfunction φ = u′

c(y).
(iii) If A = 6, then λ= 0 with φ = uc.

To determine the stability of the two branches κ− and κ+ shown in (4.5), we substitute κ± into
(4.18) to obtain

A(κ±) =
√
δ1β

2 tanh(δ1αl)
2α

± β
√

tanh(δ1αl)
2α1/2

√
β2√δ1 tanh(δ1αl)

α
− 12. (4.19)

Since existence of the roots κ± requires
√
δ1β

2tanh(δ1αl)/α > 12, it is easy to see that A(κ+)> 6, so
by theorem 4.1, we obtain that the upper branch κ = κ+ is unstable. For the other branch κ = κ−,
we take

√
δ1β

2tanh(δ1αl)/α= 12 + η, where η > 0, then we can rewrite A(κ−) as

A(κ−) = 6 −
√

12η + η2 − η

2
< 6. (4.20)

Therefore, we conclude based on theorem 4.1 that the branch with κ = κ− is stable. Moreover,
at the fold point where

√
δ1β

2tanh(δ1αl)/α = 12, we can easily reduce (4.19) to A = 6, which
corresponds to λ= 0.

(b) Case 2: τ > 0, θ = 0
In the case where τ > 0, θ = 0, (4.16) simplifies to the following equation:

χ (λ)φ = L0φ − u2
c

∫
φuc dy

A
, (4.21)

where

χ (λ) = λ

(
1 + τc

τλ+ d

)
, (4.22)

and A is independent of λ
A = 3 +

√
δ1α tanh(δ1αl)k2.

Note that equation (4.21) is similar to the well-known NLEP (4.18) except that the left-hand side
of equation (4.21) is a function of λ instead of λ alone. To understand the effect of τ on the stability
of the system, we need to figure out how the eigenvalue λ relates to the function χ (λ).
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First we rewrite equation (4.22) as a quadratic equation in terms of λ,

τλ2 + (τc + d − τχ )λ− χd = 0. (4.23)

This equation satisfies the following properties (see proof in appendix A):

Lemma 4.2. Consider the quadratic equation (4.23) with τ , c, d> 0. Then

(i) When χ is real and positive, the equation has two real roots and their signs are opposite; when χ
is real and negative, then equation (4.23) has either two negative real roots or two complex roots
with Re(λ)< 0; when χ = 0, then equation (4.23) has two roots λ1 = 0, λ2 = −((τc + d)/τ )< 0.

(ii) When τ is complex and Re(χ ) ≤ 0, then the roots of equation (4.23) have negative real parts:
Re(λ)< 0.

Now we consider the stability of the two branches. For the upper branch κ = κ+, we have
shown in §4(a) that A(k+)> 6 when τ = θ = 0, so based on theorem 4.1 and lemma 4.2, there exists
χ with χ > 0, which means a real positive eigenvalue (λ> 0) exists for the NLEP (4.21). Therefore,
the upper branch with κ = κ+ is unstable.

On the other hand, when κ = κ−, we have A(κ−)< 6, and according to theorem 4.1 and lemma
4.2, we conclude that Re(χ )< 0 or χ = 0 with φ = u′

c, in the two cases we have Re(λ)< 0 or λ=
0, which shows that the lower branch κ = κ− is always stable. We now summarize the stability
results for case 1 and case 2 as follows:

Result 4.3. Consider the system (4.1) with θ = 0, τ ≥ 0, the one-spike equilibrium
ue(x), ve(x), we(x) given in (4.4), with v0 = k+ is unstable and the other branch v0 = k− is always
stable. The two roots connect at a fold point corresponding to a double root of (4.5).

From result 4.3, we see that in the limit δ1 → 0, changing the value of τ alone does not affect
the fold bifurcation structure.

(c) Case 3: τ = 0, θ > 0
When choosing θ > 0 and τ = 0, the NLEP (4.16) simplifies to

λφ = L0φ − u2
c

∫
φuc dy
A(λ)

, (4.24)

where L0φ = φyy − φ + 2ucφ, and

A(λ) = 3 +
√
δ1α2 + θλ

δ1
tanh

(√
θλ+ δ2

1α
2l
)
κ2. (4.25)

Equation (4.24) has a similar structure to the NLEP studied in [21]. Here, we use the same idea
in [21] to derive the stability result of our model. First, we write (4.24) in the following form:

(L0 − λ)φ = u2
c , where

∫
φuc dy = A(λ),

or
f (λ) :=

∫
uc(L0 − λ)−1u2

c dy = A(λ). (4.26)

The global behaviour of this same f (λ) was studied in [24], from which we obtain the following
basic results:

Theorem 4.4 (See [24]). f (λ) has the behaviour

f (0) = 6, f ′(λ)> 0, f ′′(λ)> 0, λ ∈
(

0,
5
4

)
.

Moreover, f (λ) has a singularity at λ= 5/4 with f (λ) → ±∞ as λ→ 5/4±. For λ> 5/4, we have f (λ)< 0
and f (λ) → 0 as λ→ ∞.
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Figure 4. Computational results illustrating the stability analysis; (a) the function f (λ) given in (4.26) and it has a singularity
atλ= 5/4. (b) Hopf bifurcation points γh against θ̂ with τ = 0 and τ = 1 separately.

The graph of f (λ) is shown in figure 4a. We then first study the stability of the upper branch
v0 = κ+. Since A(λ) on the right-hand side of equation (4.26) is continuous, and from §4(a) we have
shown that A(λ= 0, κ = κ+)> 6. Therefore, the two functions f (λ) and A(λ) must intersect in the
domain λ> 0, so that equation (4.26) must have a positive real eigenvalue, which shows that the
upper branch with v0 = κ+ is unstable.

We now study the stability of the other branch v0 = κ−. Since we are interested in large domain
l → ∞, so tanh(δ1αl) ∼ 1, then we rewrite A(λ) as follows by introducing θ̂ := θ/δ2

1α
2, and γ :=

κ2
√
δ1α2 :

A(λ) ∼ 3 + γ

√
θ̂λ+ 1. (4.27)

When γ is sufficiently large, the system can be destabilized via a Hopf bifurcation. This result was
first proved in [24]. Although there is no explicit formula for the threshold γh at which the Hopf
bifurcation occurs, the critical value γh can be computed numerically by discretizing the NLEP
(4.24) using finite differences. This is shown in figure 4b, where we choose fixed θ̂ , and use the
above method to compute γh such that Re(λ) = 0.

(d) Case 4: τ > 0,θ > 0
In this section, we consider the most general case τ > 0, θ > 0, which yields the following NLEP:

χ (λ)φ = L0φ − u2
c

∫
φucdy
A(λ)

, (4.28a)

where χ (λ) = λ

(
1 + τc

τλ+ d

)
(4.28b)

and A(λ) = 3 +
√
θλ+ δ2

1α
2 tanh

(√
θλ+ δ2

1α
2l
)
κ2

√
δ1

. (4.28c)

We write equation (4.28a) in the following form:

g(λ) :=
∫

uc(L0 − χ (λ))−1u2
c dy = A(λ). (4.29)

The only difference between g(λ) and f (λ) given in (4.26) in §(b) is that g(λ) contains χ (λ) instead
of λ alone, so we need to figure out how the function χ (λ) affects the global behaviour of g(λ).
From lemma 4.2, we have that when χ > 0, there is one and only one positive root; moreover,
dχ/dλ= 1 + (τcd/(τλ+ d)2)> 0, so χ (λ) is one to one in the region λ> 0 and is monotone
increasing. Combining this property with theorem 4.4, we obtain that g(λ) has the same structure
as f (λ), and we summarize it as follows:
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Figure 5. Computational results illustrating the stability analysis; (a) the function g(λ) given in (4.29), here τ = 2, c = 0.2,
d = 1. (b) The graph of the singularity pointλ∗ in terms of τ . The other parameters are c = 0.2, d = 1.

Lemma 4.5. g(λ) has the behaviour

g(0) = 6, g′(λ)> 0, g′′(λ)> 0, λ ∈ (0, λ∗),

where λ∗ = (−(d + cτ − (5/4)τ ) +
√

(d + cτ − (5/4)τ )2 + 5dτ )/2τ is the positive root of the equation

λ

(
1 + τc

τλ+ d

)
= 5

4
.

Moreover, g(λ) has a singularity at λ= λ∗, with f (λ) → ±∞ as λ→ λ∗±. For λ> λ∗, we have g(λ)< 0 and
g(λ) → 0 as λ→ ∞.

We plot the graph of g(λ) in figure 5a, and in figure 5b, we plot the singularity point λ∗ in terms
of τ . Note that when τ = 0, lemma 4.5 recovers the result in theorem 4.4.

We now study the stability of the two branches v0 = κ± for τ > 0, θ > 0. Since the right-hand
side of equation (4.29) A(λ) is continuous with respect to λ, and it has been shown in §4(a)
that A(λ= 0, κ = κ+)> 6 = g(0). Therefore, the two functions g(λ) and A(λ) must intersect in the
domain λ> 0, so that equation (4.29) must have a real positive eigenvalue, which shows that the
upper branch with v0 = κ+ is unstable.

For the other branch v0 = κ−, we first let l → ∞ as we are interested in a large domain, so that

tanh(
√
θλ+ δ2

1α
2l) → 1, and A(λ) can be simplified to

A(λ) ∼ 3 + γ

√
θ̂λ+ 1, (4.30)

where

γ := κ2
√
δ1α2 and θ̂ := θ

δ2
1α

2
. (4.31)

This scenario is similar to case 3 given in §4(c) but the stability is now dependent on the value
of τ , and the system can be destabilized via a Hopf bifurcation when γ is large enough. We now
summarize the stability results for case 3 and case 4 as the following result:

Result 4.6. In the case τ ≥ 0 and θ̂ > 0, the one-spike solution ue(x), ve(x), we(x) given in (4.5)
with v0 = κ+ is always unstable and v0 = κ− is stable only when 0< γ < γh for some γh > 0. As γ
increases past γh, a Hopf bifurcation in the amplitudes of the spikes can be triggered.

Similar to §4(c), we can compute θh numerically by discretizing the NLEP (4.28a) using the
finite difference method. Note that here θh depends on τ . See figure 4b, where we choose τ = 1,
and compute γh numerically for fixed θ̂ such that Re(λ) = 0.
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Figure 6. Comparison between asymptotic result and full simulations obtained from PDE2PATH for Hopf bifurcation threshold
βh. The parameters are δ1 = 0.01, l = 100, τ = 1, θ = 1, c = 0.2, d = 1.

(e) Numerical verification when θ = τ = 1
In this section, we verify our asymptotic results for Hopf bifurcation with numerical simulation.
As this paper mainly considers system (4.1) with l → ∞ and the time scaling τ = θ = 1, we then
have θ̂ = 1/δ2

1α
2 and χ (λ) becomes χ (λ) = λ(1 + (c/(λ+ d))).

We now validate result 4.6 with the data obtained from the continuation package PDE2PATH.
For the fixed value of the parameters δ1,α, c and d, we compute the critical bifurcation value for
γh by discretizing the NLEP (4.28a) such that the real part of the largest eigenvalue crosses 0. This
yields κh = √

γh/δ
1/4
1 α1/2 from (4.31). Then substituting κ into the quadratic equation (3.19), we

obtain the critical value βh that triggers the Hopf bifurcation. Note that in the limit δ1 → 0, δ1β

can be ignored and we obtain an explicit formula for βh

βh = ακh + 3√
δ1κh

. (4.32)

In figure 6, we compare the critical values βh with the numerical data obtained from
PDE2PATH. Here, we take the parameter value δ1 = 0.01, which is not very small, therefore, after
obtaining κh, βh is computed through the quadratic equation (3.15), which includes the higher
order term δ1β for better approximation. It is shown in figure 6 that the theory agrees pretty well
with numerics.

Equation (4.32) provides the critical value of β at which Hopf bifurcation occurs in the limit
δ1 → 0 when τ = θ = 1. However, it does not say anything about the nature of Hopf bifurcation
(subcritical or supercritical). This motivates the need to identify the Hopf bifurcation in the
following §§5 and 6.

5. Subcritical breathing Hopf bifurcation
We further analyse the stability of the localized patterns examining the existence of breathing
Hopf bifurcation. To determine the stability, we use PDE2PATH continuation package and the
linear operator of the inhomogeneous problem by adopting the method developed in [22].
Thereby, we acquire the discretized matrix characterizing the linear operator of the localized
pattern’s solution. Then using a numerical solver, the eigenvalues of the spectrum are computed.
Figure 7a plots the breathing Hopf bifurcation, which occurs at the left corner of the localized
patterns region for the given values of parameters. The curve is obtained using PDE2PATH by
continuing a Hopf point in two-parameter space. Note that the breathing Hopf curve shown in
figure 7a corresponds to the blue curve in figure 6 with the parameter scaling b = δ1β and a = δ1α.
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Figure 7. A zoom of the spike region with δ1 = 0.01, c = 0.2 and d = 1 in the limit l = 100. (a) The magenta curve indicates
the breathing Hopf bifurcation. (b) Bifurcation diagram of vector max u versus d for fixed a= 0.4, showing the stable and
unstable branches joining at the Hopf point bh = 0.7249. The inserts plot the continuations of the periodic solution and
represent solutions and the corresponding linear spectrum stability.

Figure 7b illustrates that the fold of one parameter continuation in the spike region becomes
stable after the Hopf point rather than after the fold point as shown in figure 1c in which the value
of a is outside the unstable region. In the panels on the right, we provide examples of stable and
unstable solutions with linear spectrum stability and eigenvector closed to the Hopf bifurcation
point. Observe that the eigenvectors are spatially localized, indicating that the Hopf bifurcation
is the breathing mode of the spike.

Finally, we investigate the sub-supercritical Hopf bifurcation by continuations of the periodic
solution using PDE2PATH. We trace the branch of periodic solutions emanating from the Hopf
bifurcation point and we find it bifurcates subcritically; see the zoom in figure 7b. Therefore, the
Hopf bifurcation for this value of δ1 is subcritical.

6. Supercritical breathing Hopf bifurcation
Figure 8a displays similar findings to those in figure 7, but with an increased diffusion ratio
of δ1 = 0.05. When comparing both figures, it is evident that with a lower δ1, the breathing
Hopf bifurcation curve impacts mainly the spike region’s edge. However, at a higher δ1, this
curve crosses the BD curve, thereby affecting the homoclinic snaking zone. Additionally, at
δ1 = 0.05, a fold in the Hopf bifurcation curve indicates two distinct Hopf instability branches.
To validate this, a one-parameter continuation was performed, passing through both sides
of the Hopf bifurcation branches. The outcomes, depicted in figure 8b, show the homoclinic
snaking branches undergoing alterations due to two Hopf bifurcations, with an increase in
instability as one progresses up these branches. To decode these Hopf bifurcations, PDE2PATH
was employed to track the periodic solutions stemming from each bifurcation point. In order to
understand the nature of these Hopf bifurcations, we again use PDE2PATH to trace the branch
of periodic solutions that emanate from each Hopf bifurcation point. In the snaking diagram,
the yellow curve showcases the continuation results, highlighting the dynamics of two distinct
Hopf bifurcations. The periodic branch that originates from the first Hopf point, indicated by
black dots within the snaking branch, undergoes a supercritical bifurcation. It then converges
with the periodic branch emanating from the second Hopf point, marked by red dots on the
snaking branch, which bifurcates subcritically. This configuration in the snaking diagram clearly
illustrates the two types of Hopf bifurcations: a supercritical bifurcation occurring on the left side
and a subcritical bifurcation on the right side. A sample solution at the cyan dot is shown in
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Figure 8. (a) The figure illustrates the same bifurcation diagram as in figure 1 for model (1.1) for δ1 = 0.05, with the location
of Hopf bifurcations superimposed. (b) An example of one parameter continuation in b within the snaking. The maroon curve
within the snaking diagram represents the continuation from the Hopf point. See text for details.

the top three panels. The first panel displays both localized solutions in variables u and v. The
second panel exhibits the leading eigenvalues, which are complex and have a positive real part,
signifying instability. The third panel illustrates the localized eigenvectors related to these leading
eigenvalues, indicating a breathing-type instability. The two lower panels feature a solution at the
brown dot. The fourth panel presents the localized solutions in u and v, while the fifth panel
displays the leading eigenvalues, which in this case have a negative real part, denoting stability.

Moreover, at this particular value of δ1, something noteworthy is observed in the system’s
behaviour. The Hopf bifurcation of the (HSS), depicted by the black curve in figure 8, extends
beyond the Turing region and progresses into the region of localized states. This transition is
significant as it indicates the onset of additional instabilities in the localized state region.

Two specific values of the parameter b were selected from the odd branch of the snaking
diagram shown in figure 8, focusing on areas close to the Hopf bifurcation. These values were
used to create figure 9. The parameter and initial conditions were meticulously chosen to ensure
that b was slightly beyond the Hopf bifurcation, as depicted in plots (a), and a bit further past
the bifurcation point, as seen in plots (b). The outcomes of these simulations are displayed in
two formats: a heat map (on the left) and a time series of u-values at a specific point in the
domain (on the right). These results suggest the presence of a stable limit cycle for the value
of b that is just past the bifurcation point. This limit cycle, which appears as a ‘breather’ solution
in the heat map, modulates the amplitude across the domain but is confined to a narrow range of
parameters. Additionally, as b progresses beyond the Hopf bifurcation, the oscillation amplitude
varies rapidly. For instance, figure 9a shows a solution with three patches, and figure 9b illustrates
that crossing this secondary instability leads to spatio-temporal chaos.

In figure 10a, stability results are presented for an increased diffusion ratio of δ1 = 0.07. When
compared with figure 8, it is apparent that the breathing Hopf bifurcation has moved up and
to the right, resulting in the localized region becoming unstable with the exception of the tiny
portion that is stable beyond the (magenta) breathing Hopf bifurcation. Figure 10b displays one
parameter continuation of the snaking bifurcation diagram for a = 0.6 from the stable region.
Here, we observe that, despite the primary branches being stable, a sequence of breathing Hopf
bifurcations (black dots) causes instability in the branches of the snake associated with higher
pulses. The insets in figure 10b illustrate the continuation of the periodic solution suggesting that
the Hopf bifurcation is supercritical at this value of δ1. Where the panels on the right represent
samples of unstable and stable solutions.

For δ1 > 0.07, the localized pattern region is completely unstable as it is affected by a breathing-
mode Hopf bifurcation, as well as an HSS Hopf instability (figure not shown).

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 J

an
ua

ry
 2

02
4 



19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230591

..........................................................

(a)

4

2

10 20 30
�102t

40 50

x

�102

0.8

0.9

1.0

u(
36

1)

1.1

100 20 30
�102t

40 50

(b)

4

2

10 20 30
�102t

40 50

x

�102

1.0

1.5

2.0

u(
36

1)

100 20 30
�102t

40 50

Figure 9. Using the direct numerical simulation of (1.1), the plot shows the space–time distribution of the u-component for
a= 0.5 and two values of b. (a) For b= 1.168, just beyond the Hopf bifurcation, (b) For b= 1.16, a little further beyond the
Hopf bifurcation. Other parameter values: as in figure 8.
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7. Conclusion
In this work, we investigated the connection between homoclinic snaking and semi-strength
interaction by studying a three-variable reaction diffusion system—the extended Brusselator
model for the BZ-AOT system.

We begin by performing linear stability to determine the conditions for Turing instability, Hopf
bifurcation and BD transitions. The BD curve divides the localized structures region into two
subregions: spikes and snakings. The spike region has pure real spatial eigenvalues, whereas the
snaking region has complex spatial eigenvalues. Furthermore, we use weakly nonlinear analysis
to determine the codimension-two point at which the Turing bifurcation changes from subcritical
to supercritical. As the transition point appears, it indicates the emergence of a localized structure
region, where localized solutions are found (spike and snaking).

We explore the localized structure region and found the presence of a Hopf bifurcation
in the regime that the source parameters a = O(δ1) and b = O(δ1). Under this regime, singular
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Figure 11. Spike insertion and spike annihilation. (a) Full simulations of (1.1) with a= 0.5 and with b gradually increased
according to the formula b= 0.8 + 0.0001 ∗ t; (b) Full simulations of (1.1) with b= 1.3 and with a gradually decreased
according to the formula a= 0.3 − 0.0001 ∗ t. The other parameters are δ1 = 0.01, l = 10, c = 0.2, d = 1.

perturbation techniques are applied to construct steady-state localized patterns. The theory
predicts a fold point that connects two branches of spike solutions. Then non-local eigenvalue
arguments show that the upper branch κ+ is always unstable, while the stable lower branch can
be destabilized through a Hopf bifurcation as b increases.

Finally, we have shown that in the corner of the spike region there is a breathing Hopf
bifurcation for small diffusion ratios δ1. PED2PATH is then used to demonstrate the subcritical
nature of this Hopf bifurcation. By increasing the diffusion ratio δ1, the extent of the breathing
Hopf bifurcation eventually extends to encompass most of the localized structure region.
Moreover, we observe that the Hopf bifurcation has changed from a subcritical to a supercritical
bifurcation.

Studies in three-component reaction diffusion systems have shown that new dynamics can
be introduced by the third component and have not been seen in typical two-component
models [13,26–28]. For example, intricate nucleation-annihilation dynamics are studied in a
three-component RD model of urban crime [28], and complex oscillatory dynamics of spike
patterns are studied in a three-component Schnakenberg system [13]. In this paper, we show
how homoclinic snaking theory and semi-strong interaction theory can be integrated for a
three-component reaction–diffusion system, which leads to richer dynamical behaviours such
as additional bifurcations and chaotic dynamics. Moreover, we extended the studies for the non-
local-eigenvalue from the effect of one reaction time parameter to two, and a formula for the Hopf
bifurcation threshold was derived in terms of the two reaction time parameters.

Numerous possible extensions of this model (1.1) are possible for future study. One open
problem is to study the dynamics of spike patterns on a finite domain. In the semi-strong regime
(singular limit of a large diffusivity ratio), it is well known that spike patterns can exhibit a variety
of instabilities such as temporal oscillations in the height of the spikes, spike annihilation events,
and spike self-replication. There is a rather well-developed theory to analyse the stability and
dynamics of the spike patterns in a variety of specific RD systems such as the Gierer–Meinhardt
[23–25,29], Schnakenberg [30] and Brusselator models [31]. In figure 11, we have performed
further simulations of what can happen on a finite domain l = 10, and two types of instabilities
are observed. In figure 11a, new spikes appear from the ‘background’ away from other spikes as b
is increased. This is referred to as ‘spike insertion’ events. Contrast with spike replication, where
a spike splits into two, this is a new mechanism that leads to the birth of new spikes. In figure 11b,
some of the hot-spots get killed as a is decreased, resulting in fewer hot-spots.
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Appendix A
In this appendix, we prove lemma 4.2. First, we rewrite equation (4.25) as a quadratic equation in
terms of λ

λ2 + (c + d̂ − χ )λ− χ d̂ = 0, (A 1)

in which d̂ := d/τ > 0. This equation has two roots

λ± = −(c + d̂ − χ ) ±
√

(c + d̂ − χ )2 + 4χ d̂

2
. (A 2)

When χ is real and positive, the discriminant (c + d̂ − χ )2 + 4χ d̂ is positive, so the two roots
λ± are real and λ+λ− = −χd< 0. Therefore, there exists a positive real λ when χ > 0.

When χ is real and negative, then the two roots λ± could be real or complex. In the case

where the roots are real, it is obvious to see λ− = (−(c + d̂ − χ ) −
√

(c + d̂ − χ )2 + 4χ d̂)/2< 0; since

χ < 0, we have (c + d̂ − χ )2 > (c + d̂ − χ )2 + 4χ d̂, so λ+ = (−(c + d̂ − χ ) +
√

(c + d̂ − χ )2 + 4χ d̂)/2

is also negative. In the case where the two roots are complex, λ+ + λ− = 2Re(λ) = −(c + d̂ − χ )< 0.
Therefore, equation (A 1) has either two negative real roots or two complex roots with negative
real part when χ < 0.

Now we consider the case that χ is complex and write χ = χR + iχI. To prove part (b) of lemma
1, we let χR < 0. Then introducing the notation m := c + d̂ − χR > 0, the root formula (A2) becomes

λ± = 1
2

(
−m + iχI ±

√
(m − iχI)2 + 4χRd̂ + 4iχId̂

)

= 1
2

(
−m + iχI ±

√
a + ib

)
, (A 3)

where a = m2 − χ2
I + 4χRd̂ and b = 2χI(2d̂ − m). To compute the square root of complex number

a + bi, we let a + ib = (x + iy)2, which yields two equations in terms of x, y

x2 − y2 = a and 2xy = b.

Solving for x, y using these two equations, we obtain that

√
a + ib = ±

(√
|z| + a

2
+ i

b
|b|

√
|z| − a

2

)
, (A 4)

where |z| =
√

a2 + b2. Then substituting (A 4) into (A 3), we get

λ± = 1
2

(
−m ±

√
|z| + a

2

)
+ i

1
2

(
χI ± b

|b|

√
|z| − a

2

)
. (A 5)
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We are interested in the real parts of the two roots, which is

Re(λ±) = 1
2

(
−m ±

√
|z| + a

2

)
.

Since |z| =
√

a2 + b2 > |a|, we have
√

(|z| + a)/2> 0 so Re(λ−) = (1/2)(−m −√
(|z| + a)/2)< 0.

For the other root, to show that Re(λ−) = (1/2)(−m +√
(|z| + a)/2)< 0, we want to show

−m +√
(|z| + a)/2< 0 or

2m2 − a> |z|. (A 6)

Since a = m2 − χ2
I + 4χRd̂<m2 < 2m2, we square both sides of (A 6) and it is equivalent to prove

4m4 − 4m2a − b2 > 0. (A 7)

Now we substitute m = c + d̂ − χR, a = m2 − χ2
I + 4χRd̂ and b = 4χId̂ − 2mχI into (A 7) and obtain

that
−m2χR + χ2

I (m − d̂)> 0, (A 8)

which is obviously true when χR < 0. Therefore, Re(λ±)< 0 whenever χR < 0. Note that equation
(A 8) is still true when χR = 0 and χI �= 0. This completes the proof of lemma 4.2.

References
1. Epstein I. 1984 Complex dynamical behavior in ‘simple’ chemical systems. J. Phys. Chem. 88,

187–198. (doi:10.1021/j150646a007)
2. Vanag V, Epstein I. 2001 Pattern formation in a tunable medium: the Belousov-Zhabotinsky

reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87, 228301 (doi:10.1103/
PhysRevLett.87.228301)

3. Vanag VK, Epstein IR. 2001 Pattern formation in a tunable medium: the Belousov-
Zhabotinsky reaction in an aerosol OT microemulsion. Phys. Rev. Lett. 87, 228301.
(doi:10.1103/PhysRevLett.87.228301)

4. Dähmlow P, Vanag VK, Müller SC. 2014 Effect of solvents on the pattern formation in a
Belousov-Zhabotinsky reaction embedded into a microemulsion. Phys. Rev. E 89, 010902.
(doi:10.1103/PhysRevE.89.010902)

5. Yang L, Dolnik M, Zhabotinsky A, Epstein I. 2002 Pattern formation arising from interactions
between Turing and wave instabilities. J. Chem. Phys. 117, 7259–7265. (doi:10.1063/1.1507110)

6. Prigogine I, Lefever R. 1968 Symmetry breaking instabilities in dissipative systems. II. J. Chem.
Phys. 48, 1695–1700. (doi:10.1063/1.1668896)

7. Field R, Noyes R. 1974 Oscillations in chemical systems. IV. Limit cycle behavior in a model
of a real chemical reaction. J. Chem. Phys. 60, 1877–1884. (doi:10.1063/1.1681288)

8. Schneider TM, Marinc D, Eckhardt B. 2010 Localized edge states nucleate turbulence in
extended plane Couette cells. J. Fluid Mech. 646, 441–451. (doi:10.1017/S0022112009993144)

9. Batiste O, Knobloch E, Alonso A, Mercader I. 2006 Spatially localized binary-fluid convection.
J. Fluid Mech. 560, 149–158. (doi:10.1017/S0022112006000759)

10. Laing CR, Troy WC, Gutkin B, Ermentrout GB. 2002 Multiple bumps in a neuronal model of
working memory. SIAM J. Appl. Math. 63, 62–97. (doi:10.1137/S0036139901389495)

11. Korteweg DDJ, de Vries DG. 1895 XLI. On the change of form of long waves advancing in a
rectangular canal, and on a new type of long stationary waves. Lond., Edinb. Dublin Phil. Mag.
J. Sci. 39, 422–443. (doi:10.1080/14786449508620739)

12. Yochelis A, Tintut Y, Demer LL, Garfinkel A. 2008 The formation of labyrinths, spots and
stripe patterns in a biochemical approach to cardiovascular calcification. New J. Phys. 10,
055002. (doi:10.1088/1367-2630/10/5/055002)

13. Xie S, Kolokolnikov T, Nishiura Y. 2021 Complex oscillatory motion of multiple spikes
in a three-component Schnakenberg system. Nonlinearity 34, 5708. (doi:10.1088/1361-6544/
ac0d46)

14. Tse WH, Ward MJ. 2018 Asynchronous instabilities of crime hotspots for a 1-D reaction-
diffusion model of urban crime with focused police patrol. SIAM J. Appl. Dyn. Syst. 17,
2018–2075. (doi:10.1137/17M1162585)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 J

an
ua

ry
 2

02
4 

http://dx.doi.org/10.1021/j150646a007
http://dx.doi.org/10.1103/PhysRevLett.87.228301
http://dx.doi.org/10.1103/PhysRevLett.87.228301
http://dx.doi.org/10.1103/PhysRevLett.87.228301
http://dx.doi.org/10.1103/PhysRevE.89.010902
http://dx.doi.org/10.1063/1.1507110
http://dx.doi.org/10.1063/1.1668896
http://dx.doi.org/10.1063/1.1681288
http://dx.doi.org/10.1017/S0022112009993144
http://dx.doi.org/10.1017/S0022112006000759
http://dx.doi.org/10.1137/S0036139901389495
http://dx.doi.org/10.1080/14786449508620739
http://dx.doi.org/10.1088/1367-2630/10/5/055002
http://dx.doi.org/10.1088/1361-6544/ac0d46
http://dx.doi.org/10.1088/1361-6544/ac0d46
http://dx.doi.org/10.1137/17M1162585


23

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230591

..........................................................

15. Buttenschoen A, Kolokolnikov T, Ward MJ, Wei J. 2020 Cops-on-the-dots: the linear stability
of crime hotspots for a 1-D reaction-diffusion model of urban crime. Eur. J. Appl. Math. 31,
871–917. (doi:10.1017/S0956792519000305)

16. Gai C, Kolokolnikov T. 2021 Resource-mediated competition between two plant species with
different rates of water intake.

17. Cross M, Hohenberg P. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65,
851–1112. (doi:10.1103/RevModPhys.65.851)

18. Breña–Medina V, Champneys A. 2014 Subcritical Turing bifurcation and the morphogenesis
of localized patterns. Phys. Rev. E 90, 032923. (doi:10.1103/PhysRevE.90.032923)

19. Uecker H. 2017 Hopf bifurcation and time periodic orbits with pde2path – algorithms and
applications. Commun. Comput. Phys. 25, 812–852. (doi:10.4208/cicp.OA-2017-0181)

20. Uecker H. 2021 Numerical continuation and bifurcation in nonlinear PDEs. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

21. Al Saadi F, Champneys A, Gai C, Kolokolnikov T. 2022 Spikes and localised patterns for
a novel Schnakenberg model in the semi-strong interaction regime. Eur. J. Appl. Math. 33,
133–152. (doi:10.1017/S0956792520000431)

22. Al Saadi F, Champneys A, Verschueren van Rees N. 2021 Localized patterns and semi-
strong interaction, a unifying framework for reaction-diffusion systems. IMA J. Appl. Math. 86,
1031–1065. (doi:10.1093/imamat/hxab036)

23. Iron D, Ward MJ, Wei J. 2001 The stability of spike solutions to the one-dimensional Gierer–
Meinhardt model. Physica D 150, 25–62. (doi:10.1016/S0167-2789(00)00206-2)

24. Ward MJ, Wei J. 2003 Hopf bifurcations and oscillatory instabilities of spike solutions for
the one-dimensional Gierer-Meinhardt model. J. Nonlinear Sci. 13, 209–264. (doi:10.1007/
s00332-002-0531-z)

25. Wei J. 1999 On single interior spike solutions of the Gierer–Meinhardt system: uniqueness and
spectrum estimates. Eur. J. Appl. Math. 10, 353–378. (doi:10.1017/S0956792599003770)

26. Nishiura Y, Teramoto T, Yuan X. 2011 Heterogeneity-induced spot dynamics for
a three-component reaction-diffusion system. Commun. Pure Appl. Anal. 11, 307–338.
(doi:10.3934/cpaa.2012.11.307)

27. Gai C, Iron D, Kolokolnikov T. 2020 Localized outbreaks in an SIR model with diffusion.
J. Math. Biol. 80, 1389–1411. (doi:10.1007/s00285-020-01466-1)

28. Gai C, Ward M. 2023 The nucleation-annihilation dynamics of hotspot patterns for a reaction-
diffusion system of urban crime with police deployment. submitted to SIADS (37 p).

29. Doelman A, Gardner RA, Kaper TJ. 2001 Large stable pulse solutions in reaction-diffusion
equations. Ind. Univ. Math. J. 50, 443–507. (doi:10.1512/iumj.2001.50.1873)

30. Ward MJ, Wei J. 2002 The existence and stability of asymmetric spike patterns for the
Schnakenberg model. Stud. Appl. Math. 109, 229–264. (doi:10.1111/1467-9590.00223)

31. Tzou J, Nec Y, Ward M. 2013 The stability of localized spikes for the 1-D Brusselator reaction–
diffusion model. Eur. J. Appl. Math. 24, 515–564. (doi:10.1017/S0956792513000089)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

15
 J

an
ua

ry
 2

02
4 

https://doi.org/10.1017/S0956792519000305
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/PhysRevE.90.032923
http://dx.doi.org/10.4208/cicp.OA-2017-0181
http://dx.doi.org/10.1017/S0956792520000431
http://dx.doi.org/10.1093/imamat/hxab036
http://dx.doi.org/10.1016/S0167-2789(00)00206-2
http://dx.doi.org/10.1007/s00332-002-0531-z
http://dx.doi.org/10.1007/s00332-002-0531-z
http://dx.doi.org/10.1017/S0956792599003770
http://dx.doi.org/10.3934/cpaa.2012.11.307
http://dx.doi.org/10.1007/s00285-020-01466-1
http://dx.doi.org/10.1512/iumj.2001.50.1873
http://dx.doi.org/10.1111/1467-9590.00223
http://dx.doi.org/10.1017/S0956792513000089

	Introduction
	Preliminaries
	Semi-strong interaction asymptotic analysis
	Inner solution
	Outer solution
	Matching

	Stability analysis of single spike solutions
	Case 1: =0, =0.
	Case 2: >0, =0
	Case 3: =0, >0
	Case 4: >0,>0
	Numerical verification when = = 1

	Subcritical breathing Hopf bifurcation
	Supercritical breathing Hopf bifurcation
	Conclusion
	References

