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Abstract. We study the stationary Keller–Segel chemotaxis models with logistic cellular growth over a one-dimensional region
subject to the Neumann boundary condition. We show that nonconstant solutions emerge in the sense of Turing’s instability
as the chemotaxis rate χ surpasses a threshold number. By taking the chemotaxis rate as the bifurcation parameter, we carry
out bifurcation analysis on the system to obtain the explicit formulas of bifurcation values and small amplitude nonconstant
positive solutions. Moreover, we show that solutions stay strictly positive in the continuum of each branch. The stabilities
of these steady-state solutions are well studied when the creation and degradation rate of the chemical is assumed to be a
linear function. Finally, we investigate the asymptotic behaviors of the monotone steady states. We construct solutions with
interesting patterns such as a boundary spike when the chemotaxis rate is large enough and/or the cell motility is small.
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1. Introduction and preliminary results

In this paper, we investigate stationary Keller–Segel-type chemotaxis models with cellular growth in the
following form

⎧
⎨

⎩

(D1u
′ − χΦ(u, v)v′)′ + (ū − u)u = 0, x ∈ (0, L),

D2v
′′ − v + h(u) = 0, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L,
(1.1)

where D1, D2, χ and ū are positive constants. u, v are functions of x and Φ(u, v), h(u) are smooth
functions.

Chemotaxis is the directed movement of microorganisms along the gradient of certain chemical stim-
ulus which may be produced by the cells and consumed by certain enzyme. It has attracted significant
interest from numerous scientists over the past few decades due to its important applications in a wide
range of biological phenomena, such as wound healing, embryonic development and cancer growth of
tumor cells [1,5,10,33].

Mathematical modeling and theoretical analysis of chemotaxis date to the pioneering works of Keller
and Segel [21–23] in the early 1970s. In its original form, the Keller–Segel-type chemotaxis model consists
of four reaction–advection–diffusion equations which can be reduced into two coupled nonlinear PDEs.
One is a convection–diffusion equation for the cell population density and the other one is a reaction–
diffusion equation for the chemical concentration. Let Ω be a bounded domain in R

N , N ≥ 1 and denote
by u(x, t) the cell population density and by v(x, t) the chemical concentration at location x and time t,
respectively. Then the general form of a classical Keller–Segel chemotaxis system reads
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{
ut = ∇ · (D1(u, v)∇u − χΦ(u, v)∇v), x ∈ Ω, t > 0,
vt = D2(u, v)Δv + g(u, v), x ∈ Ω, t > 0,

(1.2)

where D1 > 0 is the so-called cell motility and it interprets the tendency of cells to move randomly over
the domain Ω, and D2 > 0 is the diffusion rate of the chemical. The constant χ measures the strength of
influence of the chemical on the directed cellular movement; moreover, χ > 0 if the chemical is attractive
to the cells and χ < 0 if the chemical is repulsive. We will focus on the former case in this paper and
assume that χ > 0 from now on. Φ(u, v) is called the sensitivity function, and it reflects the variation of
cellular sensitivity to the stimulus with respect to the population density of cells and levels of chemical
concentration. g(u, v) is the creation and degradation rate of the chemical.

One of the most important and interesting phenomena of chemotaxis is the cellular aggregation,
in which initially evenly distributed cells merge with each other and eventually aggregate into one or
several groups. The variation of the functions in (1.2) allows this Keller–Segel model to admit very rich
spatial–temporal dynamics from the view point of mathematical analysis. It can induce various interesting
and striking properties such as global existence, finite time blowups to model the cellular aggregation.
Moreover, this intuitively simple system successfully demonstrates its ability in presenting solutions with
spatial patterns even in its simplest case. Furthermore, (1.2) is able to explain the phenomenon of wave
propagation of bands of certain bacteria under the influence of a chemical.

Time-dependent system in the form of (1.2) can describe cell aggregation when the solutions blow up
with their L∞ norms going to infinity within finite or infinite time. Then the aggregation is simulated by a
single δ-function or a linear combination of several δ-functions [5,13,18,33]. An alternative way proposed is
to show that the time-dependent system (1.2) admits global-in-time solutions which converge to bounded
steady states. Moreover, these steady states can create interesting patterns such as spikes, or transition
layers, which can be used to model the cell aggregations. For N ≥ 1, Ni and Takagi [35,36] converted
a chemotaxis steady-state system into a single equation, of which they obtained nonconstant positive
solutions by variational method. Moreover, they constructed a steady-state solution that concentrates on
the most curved part of the boundary as the chemical diffusion rate shrinks to zero. See the survey paper
[34] for works and recent developments in this direction. For N = 1, Wang [52] initiated a method, later
developed in [4,54], to apply the global bifurcation to a class of chemotaxis systems without reducing
them into a single equation. It is proved that the steady states form a boundary spike (in the form of a
δ-function) or a transition layer (in the form of a step function) if the chemotaxis rate χ is sufficiently
large. We want to mention that system (1.2) is also able to model the formation of chemotactic bands,
which are represented mathematically by traveling wave solutions when the sensitivity is Φ = u

v . We will
not consider the problem in this paper, and for the results on a variants of system (1.2), see the survey
papers [14–16] for works in this direction and [55] for recent developments. We also want to point out that
there are works [3,6,7,17,44,45,51,53] on Keller–Segel chemotaxis models with two competing species.

System (1.2) has the feature that the total population of cells is preserved since the cellular growth
and proliferation have been ignored so far. This can be a reasonable assumption on the modeling of some
chemotaxis systems. For example, cell proliferation through divisions stops during the aggregation stages
of Dictyostelium Discoideum. However, Keller–Segel chemotaxis models with the cellular kinetic term
have also been proposed and studied and the simplified system of this type over bounded domain Ω reads
as follows ⎧

⎪⎪⎨

⎪⎪⎩

ut = ∇ · (D1∇u − χuφ(v)∇v) + f(u), x ∈ Ω, t > 0,
vt = D2Δv − αv + βu, x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) ≥ 0, v(x, 0) ≥ 0, x ∈ Ω,

(1.3)

where D1 and D2 are positive constants. α > 0 is a constant that measures the consumption rate of the
chemical and β > 0 interprets phenomenon that the chemicals are released by cells. This phenomenon is
interesting in that the global level patterns of the system emerge through the low level self-organization
processes. The domain boundary ∂Ω is assumed to be smooth with outer normal n. Here the homogeneous
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Neumann boundary conditions mean that this bounded region in enclosed and migration and chemical
flux. Moreover the initial data u(x, 0) and v(x, 0) are assumed to be nonnegative and not identically zero.

To study the effect of the cellular growth on the dynamics of system (1.3), a typical form of f(u) to
choose is the logistic function f(u) = u(θ − μu), where θ and μ are positive constants. For N = 1, it is
known from [38] that all solutions of (1.3) exist globally and are uniformly bounded in time. For N = 2,
Osaki et al. [37] proved the existence of global solutions and obtained an globally exponential attractor of
(1.3) provided that the sensitivity function φ(v) is smooth and has uniformly bounded derivatives up to
second order. For N ≥ 3, Winkler [56] has established the unique global solution for all smooth initial data
if μ is sufficiently large. It seems necessary to point out that, it is demonstrated in [57] that a superlinear
growth condition on f(u) may be insufficient to prevent finite time blowups for a parabolic–elliptic system
of (1.3).

For f(u) = u(1 − u)(u − a), a ∈ (0, 1
2 ) with Allee effect, Mimura and Tsujikawa [31] studied the

aggregating patterns of (1.3) when the diffusion rate D1 and the chemotaxis rate χ are both small
enough. Henry et al. [12] proved the convergence of the solutions and the formation of viscous solutions
in the singular limit of a scaling. Models with other types of f(u) have been considered in [14–16,32,52]
and the references therein.

It is the goal of this paper to study the steady states (stationary solutions) of the following general
system with a logistic cell growth,

⎧
⎪⎪⎨

⎪⎪⎩

ut = ∇ · (D1∇u − χΦ(u, v)∇v) + u(θ − μu), x ∈ Ω, t > 0,
vt = D2Δv − αv + h(u), x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

(1.4)

As we see in the aforementioned results, the global-in-time solutions and the exponential attractor of
(1.4) have already been obtained by various authors, at least for Ω ∈ R

N , N ≤ 2. However, there are
only few results concerning the steady states of (1.4). For D1 = D2 = 1, Φ(u, v) = g(u) = h(u) = u and
D1 = D2 = α = 1, Tello and Winkler [43] obtained infinitely many branches of local bifurcating solutions
to the stationary problem for all μ > 0 if N ≤ 4 and for all μ > N−4

N−2χ if N > 4. For Φ(u, v) = h(u) = u,
taking χ as the bifurcation parameter, Kuto et al. [25] construct local bifurcation branches of strip and
hexagonal steady states when the domain Ω is a rectangle in R

2. Moreover, the direction of the pitchfork
bifurcation branch is also determined there. Ma et al. [30] studied the model with a volume-filling effect,
where Φ(u) = u(1 − u) and h(u) = βu for β > 0 being a constant. They carried out the local bifurcation
analysis and established a selection mechanism of the wave modes for Ω being an interval in R

1. They
also showed that the bifurcating solution is stable only at the very branch the principal wave mode which
is a positive integer that minimizes the bifurcation parameter χ. Very recent model (1.4) over multi-
dimension is studied in [19]. We notice that none of these papers carried out global bifurcation analysis
on the steady states of (1.4).

In this paper, we study the stationary problem of the general system (1.4) and we are concerned
with the existence and stability of the spatially inhomogeneous positive solutions. In particular, we are
interested in the positive steady states that have interesting patterns such as boundary spikes or transition
layers, which can be used to model the cell aggregation phenomenon.

It is easy to see that (1.1) is a stationary system of (1.4) over a one-dimensional domain. Actually, we
introduce the new variables

D̃1 =
D1

μ
, χ̃ =

χ

μ
, D̃2 =

D2

α
, h̃(u) =

h(u)
α

, ū =
θ

μ
,
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then system (1.4) becomes
⎧
⎪⎪⎨

⎪⎪⎩

ut = ∇ · (D1∇u − χΦ(u, v)∇v) + u(ū − u), x ∈ Ω, t > 0,
vt = D2Δv − v + h(u), x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.5)

where we have dropped the tildes without confusing the reader. Then we see that (1.5) reduces to (1.1)
when Ω = (0, L). Note that at least one of D1 and D2 can be scaled to 1 in (1.5)while we keep both
of them here because they play essential roles in the dynamics of the system as we shall see later on.
Throughout this paper, we make the following assumptions on the sensitivity function Φ(u, v) for the
sake of biological and mathematical considerations:

Φ ∈ C4(R × R,R), Φ(0, 0) = 0,Φ(u, v) ≥ 0, Φv(u, v) ≤ 0, for all u, v ≥ 0, (1.6)

and there exists a positive constant C1 such that

0 < Φ(u, v) ≤ C1u, for all u, v > 0; (1.7)

we also assume that
h ∈ C3(R,R), h(0) = 0, h′(u) ≥ 0, for u ≥ 0, (1.8)

and there exists C2 > 0 such that
h(u) ≤ C2u, for u ≥ 0. (1.9)

It is easy to see that (1.5) has two equilibria, the trivial one (0, 0) and the positive one

(ū, v̄) = (ū, h(ū)). (1.10)

In the absence of chemotaxis (i.e., χ = 0), it is well known that (0, 0) is unstable and the positive equi-
librium (ū, v̄) is globally asymptotically stable. Therefore, system (1.5) does not have any nonconstant
steady state when χ = 0. Moreover, from the viewpoint of standard perturbation arguments this con-
clusion also holds for χ > 0 being small, see [20,42], e.g., For example, the proof of Theorem 5.1 and
Corollary 5.2 in [43] can be applied to system (1.5) and we have the following result.

Theorem 1.1. (Theorem 5.1 and Corollary 5.2 [43]) Assume that conditions (1.6)–(1.10) are satisfied.
There exists a positive number χ∗ such that (1.5) has no nonconstant solution if χ ∈ (0, χ∗).

Unlike random movements (diffusion), directed movements (chemotaxis) have the effect of destabilizing
the spatially homogeneous solutions. Then spatially inhomogeneous solutions may arise through bifurca-
tion as the homogeneous one becomes unstable. To study the regime of χ under which spatial patterns
arise, we first implement the standard linear stability analysis of (1.5) at (ū, v̄). Let (u, v) = (ū, v̄)+(U, V ),
where U and V are small perturbations away from (ū, v̄) in H2(Ω). Then we arrive at the following system

⎧
⎨

⎩

Ut ≈ ∇ · (D1∇U − χΦ(ū, v̄)∇V ) − ūU, x ∈ Ω, t > 0,
Vt ≈ D2ΔV − V + h′(ū)U, x ∈ Ω, t > 0,
∂U
∂n = ∂V

∂n = 0, x ∈ ∂Ω, t > 0.

According to the standard linearized stability analysis, the stability of (ū, v̄) can be determined by the
eigenvalues of the following matrix

(−D1Λ2 − ū χΦ(ū, v̄)Λ2

h′(ū) −D2Λ2 − 1

)

, (1.11)

where Λ = Λk > 0, k = 1, 2, . . ., are the kth eigenvalues of −Δ on Ω under the Neumann boundary
conditions.

In particular we have that Λk = kπ
L for the one-dimensional domain Ω = (0, L) and the following

result gives the linearized instability of (ū, v̄) with respect to (1.5).
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Proposition 1. The constant solution (ū, v̄) of (1.5) is unstable if

χ > χ0 = min
k∈N+

χk = min
k∈N+

(D1

(
kπ
L

)2
+ ū)(D2

(
kπ
L

)2
+ 1)

Φ(ū, v̄)
(

kπ
L

)2
h′(ū)

. (1.12)

Proof. For Ω = (0, L), the stability matrix (1.11) becomes

Hk =

(
−D1

(
kπ
L

)2 − ū χΦ(ū, v̄)
(

kπ
L

)2

h′(ū) −D2

(
kπ
L

)2 − 1

)

. (1.13)

Then (ū, v̄) is unstable if Hk has an eigenvalue with positive real part for any k = 1, 2, . . .. The charac-
teristic polynomial of (1.13) takes the form

pk(λ) = λ2 + Tkλ + Dk,

where

Tk = (D1 + D2)
(

kπ

L

)2

+ ū + 1,

Dk =

(

D1

(
kπ

L

)2

+ ū

)(

D2

(
kπ

L

)2

+ 1

)

− χΦ(ū, v̄)
(

kπ

L

)2

h′(ū),

then we see have that pk(λ) has one positive root if pk(0) = Dk < 0 from which the instability of (ū, v̄)
implies (1.12). This finishes the proof of this proposition. �

The linear instability of spatially homogeneous solutions is insufficient to prove the existence of spa-
tially inhomogeneous solutions. However, as we have seen above, the chemotaxis term has the effect of
destabilizing spatially homogeneous steady states which become unstable if χ surpasses χ0, then a stable
spatially inhomogeneous steady state of (1.5) may emerge through bifurcations. Clearly the emergence
of spatially inhomogeneous solutions is due to the effect of large chemotaxis rate χ, and we refer to this
as cross-diffusion-induced patterns in the sense of Turing’s instability. One of the main contributions of
this paper is the detailed bifurcation analysis for system (1.5) at (ū, v̄).

The remaining parts of this paper are organized as follows. In Sect. 2, we formulate (1.1) into a bifur-
cation problem by taking χ as the bifurcation parameter and establish infinitely many small amplitude
nonconstant positive solutions of (1.1) through local bifurcations-see Theorem 2.1. In particular, we shall
see that the bifurcation value χk is the same as that in (1.12). Then we carry out global bifurcation
analysis on the bifurcation branches and show that the solutions of (1.1) on each branch must be strictly
positive and all noncompact branches extends to infinity in the χ direction in Theorem 2.4, and there-
fore, projection of the bifurcation diagram onto the χ-axis takes the form [χ∗,∞) for some χ∗ ∈ (χ∗, χk],
where χ∗ is obtained in Proposition 1 and χk is the kth bifurcation value. In Sect. 3, we show that the
bifurcation branches are of pitchfork type. In particular, for Φ(u, v) = u and h(u) = βu, β > 0, the
stabilities of the small amplitude steady states are determined and fully characterized in terms of system
parameters. See Theorem 3.1. In Sect. 4, the asymptotic behaviors of monotone solutions are investigated
as χ → χ∞ ∈ (χ0,∞] and/or the diffusion rate D1 → D∞ ∈ [0,∞]. See Theorem 4.1. Finally we include
some discussions about our results and propose interesting problems in Sect. 5.

2. Existence of nonconstant positive solutions

In this section, we study the existence of nonconstant positive solutions of system (1.1). There are two
constant solutions to (1.1): (0, 0) and (ū, v̄). To this end, we shall apply the local bifurcation theory of
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Crandall and Rabinowitz [8] and chemotaxis rate χ as the bifurcation parameter. First of all, we define
an operator over X × X × R → Y × Y by

F(u, v, χ) =
(

(D1u
′ − χΦ(u, v)v′)′ + (ū − u)u

D2v
′′ − v + h(u)

)

, (2.1)

where X is the Hilbert space H2
N (0, L) = {w ∈ H2(0, L)|w′(0) = w′(L) = 0} and Y = L2

(
0, L
)
. Then we

can convert system (1.1) into the following abstract form

F(u, v, χ) = 0, (u, v, χ) ∈ X × X × R
+.

Obviously, the operator F is a continuously differentiable mapping from X ×X ×R to Y ×Y. In order
to apply the local bifurcation theory from Crandall and Rabinowitz [8], we collect the following facts
about the operator F(u, v, χ):

Fact 1. F(ū, v̄, χ) = 0 for any χ ∈ R
+, where (ū, v̄) is the constant equilibrium;

Fact 2. for any fixed (u0, v0) ∈ X × X , the Fréchet derivative of F is given by

D(u,v)F(u0, v0, χ)(u, v)

=
(

(D1u
′ − χ (Φu(u0, v0)u + Φv(u0, v0)v) v′

0 + Φ(u0, v0)v′)′ + (ū − 2u0)u
D2v

′′ − v + h′(u0)u

)

(2.2)

and in particular, for (u0, v0) = (ū, v̄), we have that

D(u,v)F(ū, v̄, χ)(u, v) =
(

D1u
′′ − χΦ(ū, v̄)v′′ − ūu

D2v
′′ − v + h′(ū)u

)

; (2.3)

Fact 3. for any fixed (u0, v0) ∈ X × X , D(u,v)F(u0, v0, χ) : X × X → Y × Y is a Fredholm operator with
zero index.

Fact 1 and fact 2 can be verified by straightforward calculations. To show fact 3, we rewrite (2.2) as

D(u,v)F(u0, v0, χ)(u, v) = I1

(
u

v

)′′
+ I2

(
u

v

)′
+ I3

(
u

v

)

,

where

I1 =
(

D1 −χΦ(u0, v0)
0 D2

)

, I2 =
(−χΦu(u0, v0)v′

0 −χ (Φu(u0, v0)u′
0 + 2Φv(u0, v0)v′

0)
0 0

)

and

I3 =
(−χ (Φu(u0, v0)v′

0)
′ + ū − 2u0 −χ (Φv(u0, v0)v′

0)
′

h′(u0) −1

)

.

Then we know that D(u,v)F(u0, v0, χ) is a linear and compact operator according to the standard elliptic
regularity and Sobolev embedding theorems. Moreover, we see that matrix I1 defines the principal part
of the elliptic operator D(u,v)F(u0, v0, χ) and it has two positive eigenvalues, then according to Theorem
4.4 or case 3 of Remark 2.5 in Shi and Wang [41], this operator satisfies the Agmon’s condition. Moreover,
it is a Fredholm operator with zero index according to Corollary 2.11 or Remark 3.4 of Theorem 3.3 in
[41], from which Fact 3 follows. This proves all the facts needed for the local bifurcation analysis.

Now we identify potential candidates of the bifurcation values χ. In order to let the bifurcations occur
at the equilibrium (ū, v̄, χ), we need the implicit function theorem to fail there, and therefore, the mapping
D(u,v)F(ū, v̄, χ) in (2.3) must have a nontrivial kernel, i.e.,

N (D(u,v)F(ū, v̄, χ)) 	= {0},
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where N denotes the null set. We argue by contradiction. If not, we choose (u, v) ∈ D(u,v)F(ū, v̄, χ) and
write their eigen-expansions as

u(x) =
∞∑

k=0

ūk(x), v(x) =
∞∑

k=0

v̄k(x), (2.4)

where

ūk = Tk cos
kπx

L
, v̄k = Sk cos

kπx

L

and Tk and Sk are constants. Substituting (2.4) into (2.3), we have that
(

−D1

(
kπ
L

)2 − ū χΦ(ū, v̄)
(

kπ
L

)2

h′(ū) −D2

(
kπ
L

)2 − 1

)(
Tk

Sk

)

= 0, (2.5)

then our assumption above requires that system (2.5) admits at least one nonzero solution, and therefore
its coefficient matrix must be singular and we arrive at the following identity

∣
∣
∣
∣
∣

−D1

(
kπ
L

)2 − ū χΦ(ū, v̄)
(

kπ
L

)2

h′(ū) −D2

(
kπ
L

)2 − 1

∣
∣
∣
∣
∣
= 0. (2.6)

From straightforward calculations, we obtain the following potential bifurcation value of χ, which will be
denoted by χk from now on

χk =
(D1

(
kπ
L

)2
+ ū)(D2

(
kπ
L

)2
+ 1)

Φ(ū, v̄)
(

kπ
L

)2
h′(ū)

> 0, k ∈ N
+.

Note that χk here is the same as that given in (1.12). k = 0 can be easily excluded in (2.6) and for each
k ∈ N

+ we see that dim
(
N (D(u,v)F(ū, v̄, χk))

)
= 1 and in particular

N (D(u,v)F(ū, v̄, χk)) = span {(ūk(x), v̄k(x))}, (2.7)

where

(ūk(x), v̄k(x)) =
(

Qk cos
kπx

L
, cos

kπx

L

)

, Qk =
D2

(
kπ
L

)2
+ 1

h′(ū)
, k ∈ N

+. (2.8)

Before proceeding our analysis, we remark that the local bifurcation does not occur at (0, 0). Actually,
if (ū, v̄) = (0, 0), the coefficient matrix in (2.5) is nonsingular and we must have that Tk = Sk = 0 for
all k. Therefore, N (D(u,v)F(0, 0, χ)) = {0} for all χ ∈ R, and this contradicts the necessary condition
for bifurcation to occur at (0, 0, χ). Now we are ready to prove the following theorem, which is the first
bifurcation result of our paper.

Theorem 2.1. Suppose that conditions (1.6) and (1.8) are satisfied. We assume that

ū 	= j2k2D1D2

(π

L

)4

for all positive integers j 	= k. (2.9)

Then for each k ∈ N
+, a branch of spatially inhomogeneous solutions of (1.1) bifurcate from (ū, v̄) at χ =

χk. Moreover, there exist a small positive constant δ and continuous functions s ∈ (−δ, δ) :→ χk(s) ∈ R
+

and s ∈ (−δ, δ) :→ (uk(s, x), vk(s, x)) ∈ X ×X such that χk(0) = χk and the bifurcation branches around
(ū, v̄, χk) can be parameterized as

χk(s) = χk + O(s), (uk(s, x), vk(s, x)) = (ū, v̄) + s(Qk, 1) cos
kπx

L
+ s(ξk(s), ηk(s)),
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where (ξk(s), ηk(s)) is an element in a closed complement of N (D(u,v)F(ū, v̄, χk)) in X × X with
(ξk(0), ηk(0)) = (0, 0); furthermore (uk(s, x), vk(s, x), χk(s)) solves system (1.1) and all nonconstant so-
lutions of (1.1) around (ū, v̄, χk) must stay on the curve

Γk(s) := s ∈ (−δ, δ) → (uk(s, x), vk(s, x), χk(s)) ∈ X × X × R.

Proof. To make use of the local bifurcation theory in [8], we have verified all but the so-called transversality
condition:

d
dχ

D(u,v)F(ū, v̄, χ)(ūk, v̄k)|χ=χk
/∈ R(D(u,v)F(ū, v̄, χk)).

We argue by contradiction and suppose there exists (ũ, ṽ) such that the transversality condition above
fails. Obviously

d
dχ

D(u,v)F(ū, v̄, χ)(ūk, v̄k)|χ=χk
=
(−Φ(ū, v̄)v̄′′

k

0

)

, (2.10)

where ūk = Qk cos kπx
L and v̄k = cos kπx

L as defined in (2.8), then we obtain that
⎧
⎨

⎩

D1ũ
′′ − χkΦ(ū, v̄)ṽ′′ − ūũ = −Φ(ū, v̄)v̄′′

k , x ∈ (0, L),
D2ṽ

′′ − ṽ + h′(ū)ũ,= 0, x ∈ (0, L),
ũ(x) = ṽ(x) = 0, x = 0, L.

(2.11)

Similar as the analysis above, we expand ũ and ṽ as

ũ =
∞∑

k=0

T̃k cos
kπx

L
, ṽ =

∞∑

k=0

S̃k cos
kπx

L
,

and substitute the series into (2.11) to obtain the following system
(

−D1(kπ
L )2 − ū χkΦ(ū, v̄)

(
kπ
L

)2

h′(ū) −D2

(
kπ
L

)2 − 1

)(
T̃k

S̃k

)

=
(

Φ(ū, v̄)
(

kπ
L

)2

0

)

. (2.12)

Now we see from (2.6) that the coefficient matrix is singular, and the right-hand side of (2.12) is not
in the range of the matrix, and therefore system (2.11) is unsolvable. We reach a contradiction and the
transversality condition is verified. Finally, we need that χk 	= χj for all j 	= k, i.e.,

(D1

(
kπ
L

)2
+ ū)(D2

(
kπ
L

)2
+ 1)

Φ(ū, v̄)
(

kπ
L

)2
h′(ū)

	= (D1

(
jπ
L

)2
+ ū)(D2

(
jπ
L

)2
+ 1)

Φ(ū, v̄)
(

jπ
L

)2
h′(ū)

,

which is equivalent as (2.9) as we can show through straightforward calculations. �

From the local bifurcation analysis, we are able to obtain nonconstant positive solutions with small
amplitudes around (ū, v̄, χk) for all k ∈ N

+. Moreover, we know from Proposition 1 that the equilibrium
(ū, v̄) is stable for all χ < mink∈N+ χk, and it becomes unstable if χ > mink∈N+ χk, which is exactly
the location where the bifurcation occurs. Then we see that the instability of homogeneous steady state
and pattern formations are driven by the cross-diffusion (the chemotaxis term) in the sense of Turing’s
instability.

According to the local bifurcation analysis above, we have established nonconstant positive solutions
of (1.1), which are small perturbations of (ū, v̄). We now proceed to extend the local curves Γk(s) by the
global bifurcation theory for nonlinear Fredholm mappings from [8,40] and the recent version developed
in [41]. The first step of our analysis is to present the following a priori estimates on the solutions of
(1.1).
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Lemma 2.2. Assume that condition (1.9) is satisfied. Let (u, v) be any positive solution to the boundary
value problem (1.1). Then

ū‖u‖L1(0,L) = ‖u‖2
L2(0,L) ≤ ū2L (2.13)

and

min
[0,L]

u ≤ ū ≤ max
[0,L]

u;

moreover, there exists a positive constant C independent of D1 and χ such that

‖v‖H2(0,L) ≤ C. (2.14)

Proof. Integrating the first equation of (1.1) over (0, L) by parts, we have from the Hölder’s inequality
that

‖u‖2
L2(0,L) = ū‖u‖L1(0,L) ≤ ū‖u‖L2(0,L)

√
L,

and it follows that ‖u‖L2(0,L) ≤ ū
√

L. On the other hand, we can also see that
L∫

0

(ū − u)udx = 0,

then we must have that either (ū − u)u ≡ 0 or (ū − u)u changes sign over (0, L), hence min[0,L] u ≤
ū ≤ max[0,L] u in either case. On the other hand, by applying the elliptic regularity theory to the second
equation of (1.1) and using (1.9), we can show that ‖v‖H2(0,L) is uniformly bounded by a positive constant
C. This finishes the proof of the lemma. �
Lemma 2.3. Assume that conditions (1.6)–(1.9) are satisfied. Let (u, v) be any positive solution of (1.1).
Then we have that

u(x) ≤ u(L)e
χ

D1
‖ Φ(u,v)

u v′‖∞(L−x) +
ū2L

D1

L∫

x

e− χ
D1

‖ Φ(u,v)
u v′‖∞(x−y)dy. (2.15)

Proof. We integrate the u-equation in (1.1) over (x,L) and obtain that

u′(x) − χ

D1
Φ(u, v)v′ =

1
D1

L∫

x

(ū − u)udy ≥ − 1
D1

L∫

x

u2dy ≥ − ū2L

D1
, (2.16)

where the last inequality follows from (2.13). Note that ‖Φ(u,v)
u v′‖∞ is bounded because of (1.7) and

(2.14). Then we have from (2.16) that

u′(x) +
χ

D1
‖Φ(u, v)

u
v′‖L∞u ≥ − ū2L

D1
, (2.17)

and the Grönwall’s inequality implies (2.15). �
We see from (2.15) and the standard elliptic regularity that ‖u‖H2 is bounded if both u(L) and χ/D1

are finite. Moreover, according to the uniform boundedness of ‖v‖H2 and the Sobolev embedding, we
have that ∀γ ∈ (0, 1

2 ), ‖v‖C1+γ is uniformly bounded for all χ ∈ (0,∞).
Now we carry the global bifurcation analysis on the local bifurcation curve Γk(s) established in Theo-

rem 2.1. In particular, we shall show that all solutions on the continuum of each branch must be strictly
positive on [0, L]. In the rest of this section, we shall drop the subindex k and denote Γ(s) as Γk(s)
without confusing our reader.

For each k ∈ N
+, let Γu = {(uk(s, x), v1(s, x), χk(s)|s ∈ (0, δ)} be the upper branch and Γl =

{(u1(s, x), v1(s, x), χk(s)|s ∈ (−δ, 0)} be the lower branch of the bifurcation curve Γ(s) near the bifur-
cation point (ū, v̄, χk) respectively. On the other hand, we can easily show from the strong maximum
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principle and Hopf’s lemma that u(x) ≥ 0 and v(x) ≥ 0 for x ∈ [0, L] for all solutions of system (1.1).
Thus we let V = (X ×X ×R

+)∩{(u, v, χ)|u(x) ≥ 0, v(x) ≥ 0, x ∈ [0, L]} and consider the problem (1.1)
in this cone. Denoting the solution set of (1.1) by S =

{
(u, v, χ) ∈ V : F (u, v, χ) = 0, (u, v) 	= (ū, v̄)

}
and

S̄ the closure of S, we readily see that S̄ is not empty since Γ(s) is contained in S̄.
Let C be a connected component (maximal connected subset) of S̄ and C+ be the connected component

of C\{Γl ∪ (ū, v̄, χk)} that contains Γu (resp. C− be the connected component of C\Γu ∪ (ū, v̄, χk)} that
contains Γl), then we have from Theorem 4.4 in [41] that each of the sets C+ and C− satisfies one of the
following alternatives: (i) it is not compact in V ; (ii) it contains a point (ū, v̄, χ∗) with χ∗ 	= χk; or (iii)
it contains a point (ū + u, v̄ + u, χ), where (u, v) 	= (0, 0) and (u, v) ∈ Z, where Z is a closed complement
of N

(
D(u,v)F(ū, v̄, χk)

)
in X × X . Without loss of our generality, we take from now on

Z =

⎧
⎨

⎩
(u, v) ∈ X × X|

L∫

0

(Qku(x) + v(x)) cos
kπx

L
= 0

⎫
⎬

⎭
, (2.18)

where Qk = D2(
kπ
L )2+1

h′(ū) . We will show that if C+ (also C−) is noncompact then it extends to infinity in
the positive direction of χ-axis. Therefore, the projection of the continuum of the solution set C+ (and
also C−) takes the form [χ̃,∞) for some χ̃ ∈ (χ∗, χk], where χ∗ is obtained in Theorem 1.1. Moreover, all
solutions on C+ (and also C−) must be strictly positive on [0, L]. Without loss of our generality, we study
only the upper branch C+ and we are now in a position to present another main result of this paper.

Theorem 2.4. Suppose that the conditions in Theorem 2.1 are satisfied. Then all solutions in each bifur-
cation branch Γk(s) are strictly positive on [0, L]. Moreover the noncompact continuum of each branch
can only extend to infinity in the positive χ-axis direction.

Proof. As a matter of fact, we will show that the elements on C+ satisfy the properties described in the
theorem while the same conclusions can be made about C−. We first prove that (u, v, χ) stays strictly
positive on C+ for x ∈ [0, L].

To this end, we introduce the set of positive functions P = {(u, v) ∈ X × X|u(x) > 0, v(x) > 0, x ∈
[0, L]} and we want to show that C+ ⊂ P × R

+ (notice that their intersection is not empty because at
least it contains the portion of Γu(s) near the bifurcation point (ū, v̄, χk) (i.e., with s ∈ (0, δ))). If this
fails, since C+ is connected and P ×R

+ is open, there exists a solution (u, v, χ) ∈ C+ ×∂(P ×R
+) to (1.1)

such that u, v ≥ 0 on [0, L] and either u(x) = 0 or v(x) = 0 somewhere over [0, L], or χ = 0. If χ = 0,
system (1.1) becomes

⎧
⎨

⎩

D1u
′′ + (ū − u)u = 0, x ∈ (0, L),

D2v
′′ − v + h(u) = 0, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L.
(2.19)

It is known from our discussions in the introduction section that system (2.19) admits only constant
solution (0, 0) or (ū, v̄). Moreover, we know that bifurcation does not occur at (0, 0). Therefore, (u, v) ≡
(ū, v̄) and χ = 0 must be a bifurcation value. However, this is impossible since all bifurcation values take
the form χk in (1.12) which must be positive as we have shown in Theorem 2.1. If v(x0) = 0 for some
x0 ∈ [0, L], we apply the strong maximum principle and Hopf’s lemma to the following problem

{
D2v

′′ − v = −h(u) ≤ 0, x ∈ (0, L),
v′(x) = 0, x = 0, L,

(2.20)

then we have that v(x) ≡ 0 on [0, L] and it follows from the u-equation in (1.1) that u(x) ≡ 0. This again
reaches a contradiction since bifurcation does not occur at (0, 0). Therefore, we must have that v(x) > 0
on [0, L]. Similarly we apply the strong maximum principle and Hopf’s lemma to the u-equation in (1.1),
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which is equivalent to
{

D1u
′′ − χΦu(u, v)v′u′ −

(
χΦ(u,v)

u v′′ + u − ū
)

u = χΦv(u, v)(v′)2 ≤ 0, x ∈ (0, L),
u′(x) = 0, x = 0, L,

(2.21)

where coefficients of u′ and u are bounded because Φ(u,v)
u is bounded thanks to (1.7). Then we must have

u(x) > 0 on [0, L], and this completes the proof of the positivity part.
Suppose that C+ is unbounded in X × X ×R. We shall show that is can only extend to infinity in the

positive direction χ-axis. According to Lemmas 2.2 and 2.3, both u and v are bounded in X = H2(0, L)
given a finite χ > 0, hence C+ must extend to infinity along the χ-axis. On the other hand, suppose
that C+ extends to the negative direction of χ-coordinate, then it must cross χ = 0, for which (1.1) no
nonconstant positive solution which implies that 0 is a bifurcation value; however, this is impossible as
we have shown above that any bifurcation value must be χk given by (1.12). Therefore, C+ must extend
to infinity in the positive direction of χ-coordinate and its project onto the χ-axis takes the form [χ0,∞)
for some χ0 ≤ χk. This completes the proof of Theorem 2.4. �

According to the discussions above, C+ satisfies one of the following alternatives: (i) it is not compact
in V ; (ii) it contains a point (ū, v̄, χ∗) with χ∗ 	= χk; or (iii) it contains a point (ū + u, v̄ + u, χ), where
(u, v) 	= (0, 0) and (u, v) ∈ Z, which is defined in (2.18). When there is no cellular growth, [54] ruled
out the last two cases for the first branch by showing that all bifurcating solutions on the continuum
stay monotone, i.e., u′(x) < 0 and v′(x) < 0 on (0, L). To apply their topology argument we proceed as
follows. Define the set P+ = {(u, v) ∈ X × X|u′(x) < 0, v′(x) < 0, x ∈ (0, L)} and we need to show that
C+ ⊂ P+ × R

+. Apparently C+ ∩ (P+ × R
+) 	= ∅. Since C+ is a connected subset of X × X × R, it is

sufficient to show that C+ ∩ (P+ × R
+) is both open and closed with respect to the topology of C+. To

show the openness, we take some (ũ, ṽ, χ̃) ∈ C+ ∩ (P+ × R
+) and assume that there exists a sequence

{(ũn, ṽn, χ̃n)} in C+ that converges to (ũ, ṽ, χ̃) in the norm of X ×X ×R. Then we have from the standard
elliptic regularity theories that (ũn, ṽn) → (ũ, ṽ) in C2([0, L]) × C2([0, L]). Differentiating the v-equation
in (1.1), we have that

{
D2(ṽ′)′′ − ṽ′ = −h′(ũ)ũ′ ≥ 0, x ∈ (0, L),
ṽ′(0) = ṽ′(L) = 0.

(2.22)

Then we conclude from Hopf’s lemma that

ṽ′′(L) > 0 > ṽ′′(0). (2.23)

This second-order nondegeneracy at the boundary, together with the fact ṽ′ < 0, implies that ṽ′
n <

0 on (0, L) for large n. Similarly we can show that ũ′′(0) < 0 < ũ′′(L) and again the second-order
nondegeneracy implies that ũ′

n < 0 on (0, L) for large n. This completes the proof of the openness. To
show the closedness of C+ ∩ (P+ × R

+) in C+, we take a sequence {(ũn, ṽn, χ̃n)} ∈ C+ ∩ (P+ × R
+)

and assume that there exists (ũ, ṽ, χ̃) such that {(ũn, ṽn, χ̃n)} → (ũ, ṽ, χ̃) in the topology of C+. Again,
by elliptic regularity theory we have that, {(ũn, ṽn)} → (ũ, ṽ) in C2([0, L]) × C2([0, L]) and ũ′(x) ≥ 0,
ṽ′(x) ≥ 0 on (0, L). It is sufficient to show that ũ′(x) > 0 and ṽ′(x) > 0 on (0, L) and we first prove
the latter one by a contradiction argument. If ṽ′(x) = 0 for x0 ∈ (0, L), we apply the strong maximum
principle and Hopf’s lemma to (2.22) and have that ṽ′(x) ≡ 0. Then we see that the u-equation becomes
D1ũ

′′(x) + (ū − ũ)ũ = 0, ũ′(0) = ũ′(L) = 0, which implies that ũ′(x) = 0. Thus (ũ, ṽ) ≡ (0, 0) or
(ũ, ṽ) ≡ (ū, v̄). The first case is impossible, since we have shown that bifurcation can not occur at (0, 0).
Then (ũ, ṽ) ≡ (ū, v̄) and χ̃ is a bifurcation value thus equals χk for some k ≥ 1. We know that k = 1
is impossible since (ū, v̄, χ1) 	∈ C+. Moreover, k ≥ 2 is also impossible since (ũn, ṽn, χ̃n) around the
bifurcation point (ū, v̄, χk), k ≥ 2, satisfy the formula in Theorem 2.1 and must be nonmonotone around
(ū, v̄, χk), which is a contradiction to our assumption that ũ′ ≤ 0 and ṽ′ ≤ 0 on (0, L). However, one can
not show that ũ′ < 0 of (0, L). Therefore, one needs a novel approach than [54] to this end. Moreover,
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it is interesting and also important to study the nodal profiles of the nonmonotone bifurcating solutions.
However, these questions are out of the scope of this paper.

3. Stability analysis of the bifurcating solutions

In this section, we investigate the stability or instability of the spatially inhomogeneous solution (uk(s, x),
vk(s, x)) that bifurcates from (ū, v̄) at χ = χk. For this purpose, we apply the classical the linearized
stability results of Crandall and Rabinowitz in [9] through the analysis of the spectrum of system (1.1).
Stability here refers to that of the inhomogeneous patterns taken as an equilibrium to (1.5). First of all,
we determine the direction in which the bifurcation curve Γ(s) turns around (ū, v̄, χk).

3.1. Bifurcation of pitchfork type

We recall from Theorem 1.7 in [8] that for any s ∈ (−δ, δ),
(
uk(s, x) − ū − sQk cos kπx

L , vk(s, x) − v̄ −
s cos kπx

L

)
∈ Z, where Z is defined as in (2.18). Furthermore, if Φ(u, v) is C5-smooth, then F defined in

(2.1) is C4-smooth. According to Theorem 1.18 of [8], (uk, vk, χk) are C3-smooth functions of s and we
can write the following expansions:

⎧
⎨

⎩

uk(s, x) = ū + sQk cos kπx
L + s2ψ1 + s3ψ2 + o(s3),

vk(s, x) = v̄ + s cos kπx
L + s2ϕ1 + s3ϕ2 + o(s3),

χk(s) = χk + K2s + K3s
2 + o(s2),

(3.1)

where (ψi, ϕi) ∈ Z for i = 1, 2 and K2, K3 are constants. Note that the o(s3) terms in uk(s, x) and
vk(s, x) are measured in the H2-norms.

As we shall see the coming analysis that, if K2 	= 0, the sign of K2 determines the stability of
(uk(s, x), vk(s, x)), and if K2 = 0, we need to determine the sign of K3, and so on so forth. Now we
write each component of the u-equation into a series of s and then obtain the following identities from
straightforward calculations,

D1u
′′ = −D1

(
kπ

L

)2

sQk cos
kπx

L
+ s2D1ψ

′′
1 + s3D1ψ

′′
2 + o(s3), (3.2)

v′ = −
(

kπ

L

)

s sin
kπx

L
+ s2ϕ′

1 + s3ϕ′
2 + o(s3), (3.3)

(ū − u)u = −ū

(

Qks cos
kπx

L
+ ψ1s

2 + ψ2s
3 + o(s3)

)

−
(

Qks cos
kπx

L
+ ψ1s

2 + ψ2s
3 + o(s3)

)2

, (3.4)

and

Φ(u, v) = Φ(ū, v̄) + Φu(ū, v̄)u + Φv(ū, v̄)v

+
1
2
(
Φuu(ū, v̄)u2 + Φvv(ū, v̄)v2 + 2Φuv(ū, v̄)uv

)
+ o((u − ū)2, (v − v̄)2)

= Φ(ū, v̄) + s

(

Φu(ū, v̄)Qk cos
kπx

L
+ Φv(ū, v̄) cos

kπx

L

)

+ s2 (QkΦu(ū, v̄)ψ1

+ Φv(ū, v̄)ϕ1 +
(

1
2
Φuu(ū, v̄)Q2

k +
1
2
Φvv(ū, v̄) + Φuv(ū, v̄)Qk

)

cos2
kπx

L

)

+ o(s2), (3.5)
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where again the little-o terms are taken with respect to the H2-norms. After substituting the terms
(3.2)–(3.5) into the u-equation of (1.1), we obtain that

sD1

(
kπ

L

)2

Qk cos
kπx

L
− s2D1ψ

′′
1 − s3D1ψ

′′
2

= − ū

(

sQk cos
kπx

L
+ s2ψ1 + s3ψ2 + o(s3)

)

−
(

sQk cos
kπx

L
+ s2ψ1 + s3ψ2 + o(s3)

)2

− (χk + K2s + K3s
2 + o(s3)

) (
(P0 + P1s + P2s

2)
(
χk + K2s + K3s

2 + o(s3)
)′)′

, (3.6)

where we have used the notations that P0 = Φ(ū, v̄), P1 = Φu(ū, v̄)Qk cos kπx
L + Φv(ū, v̄) cos kπx

L , and

P2 = QkΦu(ū, v̄)ψ1 + Φv(ū, v̄)ϕ1 +
(1

2
Φuu(ū, v̄)Q2

k +
1
2
Φvv(ū, v̄) + Φuv(ū, v̄)Qk

)
cos2

kπx

L
.

Equating the s2 terms in (3.6), we have that

D1ψ
′′
1 − ūψ1 − Q2

k cos2
kπx

L
+ Φ(ū, v̄)

(
kπ

L

)2

K2 cos
kπx

L

= χk

(

−(QkΦu(ū, v̄) + Φv(ū, v̄))
(

kπ

L

)2

cos
2kπx

L
+ Φ(ū, v̄)ϕ′′

1

)

. (3.7)

Multiplying (3.7) by cos kπx
L and integrating it over (0, L) by parts give rise to

(
kπ

L

)2

Φ(ū, v̄)K2

L∫

0

cos2
kπx

L
dx

=

(

D1

(
kπ

L

)2

+ ū

) L∫

0

ψ1 cos
kπx

L
dx −

(
kπ

L

)2

χkΦ(ū, v̄)

L∫

0

ϕ1 cos
kπx

L
dx. (3.8)

Substituting (3.1) into the v-equation in (1.1), we obtain that

D2

(
kπ

L

)2

s cos
kπx

L
− s2D2ϕ

′′
1 − s3D2ϕ

′′
2 − o(s3) +

(

v̄ + s cos
kπx

L
+ s2ϕ1 + s3ϕ2 + o(s3)

)

= h(ū)+h′(ū)
(

Qks cos
kπx

L
+ψ1s

2 + ψ2s
3+o(s3)

)

+
1
2
h′′(ū)

(

Qks cos
kπx

L
+ ψ1s

2 + ψ2s
3 + o(s3)

)2

+
1
6
h′′′(ū)

(

Qks cos
kπx

L
+ ψ1s

2 + ψ2s
3 + o(s3)

)3

. (3.9)

Equating the s2 terms in (3.9), we obtain the following equation

D2ϕ
′′
1 + h′(ū)ψ1 − ϕ1 +

1
2
Q2

kh′′(ū) cos2
kπx

L
= 0. (3.10)

Multiplying (3.10) by cos kπx
L and integrating it over (0, L) by parts, we have that

h′(ū)

L∫

0

ψ1 cos
kπx

L
dx −

(

D2

(
kπ

L

)2

+ 1

) L∫

0

ϕ1 cos
kπx

L
dx = 0 (3.11)
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On the other hand, since (ψ1, ϕ1) ∈ Z, we have from (2.18) that
L∫

0

(Qkψ1 + ϕ1) cos
kπx

L
dx = Qk

L∫

0

ψ1 cos
ϕx

L
dx +

L∫

0

ψ1 cos
kπx

L
dx = 0 (3.12)

From (3.11) and (3.12), we arrive at the following system

(
h′(ū) −D2

(
kπ
L

)2 − 1
Qk 1

)

⎛

⎜
⎜
⎝

L∫

0

ψ1 cos kπx
L dx

L∫

0

ϕ1 cos kπx
L dx

⎞

⎟
⎟
⎠ =

(
0
0

)

. (3.13)

It is easy to see that the coefficient matrix of (3.13) is nonsingular, and therefore we must have that
L∫

0

ψ1 cos
kπx

L
dx =

L∫

0

ϕ1 cos
kπx

L
dx = 0. (3.14)

Putting (3.14) into (3.8), we readily see that K2 = 0 and hence we have proved the following observation.

Proposition 2. Assume that the conditions (1.7), (1.8) and (2.9) are satisfied. Then K2 = 0 and the local
bifurcation curve of (1.1) at (ū, v̄, χk) is of pitchfork type if K3 	= 0.

We want to mention that it is shown that the local steady-state bifurcation for reaction–advection–
diffusion system is pitch–fork in general when the domain is a 1D interval. However, this is not necessary
true in higher space dimensions.

3.2. Bifurcation direction

Now we proceed to calculate the sign of K3 to determine the turning direction and the stability of Γk(s) at
(ū, v̄, χk). To this end, we need to collect the s3-terms in (3.6) and (3.9). For the simplicity of calculations,
we make the following particular choices of Φ and h(u),

Φ(u, v) = u, h(u) = βu, β > 0, (3.15)

and therefore we will study the stability of (uk(s, x), vk(s, x)) of the following system in the rest part of
this section,

⎧
⎨

⎩

(D1u
′ − χuv′)′ + (ū − u)u = 0, x ∈ (0, L),

D2v
′′ − v + βu = 0, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L.
(3.16)

Since K2 = 0, we readily see that collecting the s2 terms of (3.6) and (3.9) leads us to
⎧
⎨

⎩

D1ψ
′′
1 − χkūϕ′′

1 − ūψ1 + χkQk

(
kπ
L

)2
cos 2kπx

L − Q2
k cos2 kπx

L = 0, x ∈ (0, L),
D2ϕ

′′
1 − ϕ1 + βψ1 = 0, x ∈ (0, L),

ψ′
1(x) = ϕ′

1(x) = 0, x = 0, L.

(3.17)

Moreover, by collecting the s3 terms of (3.6) and (3.9), together with the assumption (3.15) and the fact
that K2 = 0, we arrive at the following system
⎧
⎪⎪⎨

⎪⎪⎩

D1ψ
′′
2 − ūψ2 − 2Qkψ1 cos kπx

L + χkQk(kπ
L )ϕ′

1 sin kπx
L + χk

(
kπ
L

)
ψ′

1 sin kπx
L

−χkūϕ′′
2 − χkQkϕ′′

1 cos kπx
L + χkψ1

(
kπ
L

)2
cos kπx

L + K3ū
(

kπ
L

)2
cos kπx

L = 0, x ∈ (0, L)
D2ϕ

′′
2 − ϕ2 + βψ2 = 0, x ∈ (0, L),

ψ′
2(x) = ϕ′

2(x) = 0, x = 0, L.

(3.18)
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Following the same arguments that lead to (3.14), we can also show that

L∫

0

ψ2 cos
kπx

L
dx =

L∫

0

ϕ2 cos
kπx

L
dx = 0. (3.19)

Now multiplying (3.18) by cos kπx
L and integrating it over (0, L) by parts, we obtain that

D1

L∫

0

ψ′′
2 cos

kπx

L
dx − ū

L∫

0

ψ2 cos
kπx

L
dx − 2Qk

L∫

0

ψ1 cos2
kπx

L
dx

+χkQk

(
kπ

L

) L∫

0

ϕ′
1 sin

kπx

L
cos

kπx

L
dx + χk

(
kπ

L

) L∫

0

ψ′
1 sin

kπx

L
cos

kπx

L
dx

−χkū

L∫

0

ϕ′′
2 cos

kπx

L
dx − χkQk

L∫

0

ϕ′′
1 cos2

kπx

L
dx + χk

(
kπ

L

)2
L∫

0

ψ1 cos2
kπx

L
dx

+ ū

(
kπ

L

)2

K3

L∫

0

cos2
kπx

L
= 0. (3.20)

Substituting (3.19) into (3.20), we have from the integration by parts that

ūkπ2

2L
K3 =

(

Qk − χk

2

(
kπ

L

)2
) L∫

0

ψ1dx +

(

Qk +
χk

2

(
kπ

L

)2
) L∫

0

ψ1 cos
2kπx

L
dx

−χkQk

(
kπ

L

)2
L∫

0

ϕ1 cos
2kπx

L
dx. (3.21)

Therefore, in order to calculate K3, we will need to evaluate the following integrals:

L∫

0

ψ1dx,

L∫

0

ψ1 cos
2kπx

L
dx, and

L∫

0

ϕ1 cos
2kπx

L
dx.

To compute the last two integrals, we multiply the first equation (3.17) by cos 2kπx
L and integrate it over

(0, L). Then through straightforward calculations we obtain that

−
(

D1

(
2kπ

L

)2

+ ū

) L∫

0

ψ1 cos
2kπx

L
dx + χkū

(
2kπ

L

)2
L∫

0

ϕ1 cos
2kπx

L
dx

= −Q2
kL

2ū

(

D1

(
kπ

L

)2

+
ū

2

)

. (3.22)

Multiplying the second equation in (3.17) by cos 2kπx
L and integrating it over (0, L) by parts, we have

from straightforward calculations that

D2

(
2kπ
L

)2
+ 1

β

L∫

0

ϕ1 cos
2kπx

L
dx = Q2k

L∫

0

ϕ1 cos
2kπx

L
dx =

L∫

0

ψ1 cos
2kπx

L
dx, (3.23)
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where we use the notation that Q2k =
D2

(
2kπ

L

)2
+1

β . We see that equations (3.22) and (3.23) are equivalent
to
⎛

⎝
−
(
D1

(
2kπ
L

)2
+ ū
)

χkū
(

2kπ
L

)2

β −
(
D2

(
2kπ
L

)2
+ 1
)

⎞

⎠

⎛

⎜
⎜
⎝

L∫

0

ψ1 cos 2kπx
L dx

L∫

0

ϕ1 cos 2kπx
L dx

⎞

⎟
⎟
⎠ =

(
−Q2

kL
2ū

(
D1

(
kπ
L

)2
+ ū

2

)

0

)

.

We note that this system is solvable thanks to (2.9) (which implies that χk 	= χ2k) since bifurcation
occurs at (ū, v̄, χk). Moreover, we can have from straightforward calculations that,

L∫

0

ψ1 cos
2kπx

L
dx =

(
D2

(
2kπ
L

)2
+ 1
)

Q2
KL
2ū

(
D1

(
kπ
L

)2
+ ū

2

)

12D1D2

(
kπ
L

)4 − 3ū
; (3.24)

L∫

0

ϕ1 cos
2kπx

L
dx =

β
Q2

KL
2ū

(
D1

(
kπ
L

)2
+ ū

2

)

12D1D2

(
kπ
L

)4 − 3ū
; (3.25)

on the other hand, integrating the first equation in (3.17) over (0, L) by parts leads us to
L∫

0

ψ1dx = −Q2
kL

2ū
. (3.26)

By putting (3.23)–(3.26) together, we conclude from (3.21) and straightforward calculations that

ūkπ2

2L
K3 =

Q3
kL

16D2(kπ
L )4

F (D1)

D1 − ū
4D2

(
L
kπ

)4 =
Q3

kL

16D2(kπ
L )4

aD2
1 + bD1 + c

D1 − ū
4D2

(
L
kπ

)4 , (3.27)

where

a =
14D2(kπ

L )6 − (kπ
L )4

ū2
, b = −2D2(kπ

L )4 + 5(kπ
L )2

2ū
, c = 5D2

(
kπ

L

)2

+
7
2
.

Moreover, if D2 ∈
(
0, 113

1116

(
kπ
L

)2
)
, the quadratic equation F (r) = 0 has two roots

r1 =
ū

(

2D2

(
kπ
L

)2
+ 5 −

√

−1116D2
2

(
kπ
L

)4 − 684D2

(
kπ
L

)4
+ 81

)

14D2

(
kπ
L

)4 − (kπ
L

)2

and

r2 =
ū

(

2D2

(
kπ
L

)2
+ 5 +

√

−1116D2
2

(
kπ
L

)4 − 684D2

(
kπ
L

)4
+ 81

)

14D2

(
kπ
L

)4 − (kπ
L

)2 ;

In particular, if D2 = 1
14

(
kπ
L

)2, we have that r1 = r2 = c
b . Now by denoting

r3 =
ū

4D2

(
L

kπ

)4

,

we present the following results that characterize the sign of K3 hence the turning direction of the
bifurcation branch Γk around (ū, v̄, χk).

Theorem 3.1. The bifurcation curve Γk(s) of (3.16) around (ū, v̄, χk) turns to the right if K3 > 0 and to
the left if K3 < 0. Moreover, we have the following cases:
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(i) when D2 ∈ (0, 1
14

(
L
kπ

)2
], we have that K3 > 0 if D1 ∈ (r2, r3) and K3 < 0 if D1 ∈ (0, r2) ∪ (r3,∞);

(ii) when D2 ∈ ( 1
14

(
L
kπ

)2
, 1

10

(
L
kπ

)2
), we have that r1 < r3 < r2 and K3 > 0 if D1 ∈ (r1, r3) ∪ (r2,∞)

and K3 < 0 if D1 ∈ (0, r1) ∪ (r3, r2);
(iii) when D2 = 1

10

(
L
kπ

)2
, we have that r1 = r3 and K3 > 0 if D1 ∈ (r2,∞) and K3 < 0 if D1 ∈

(0, r1) ∪ (r1, r2);
(iv) when D2 ∈ ( 1

10

(
L
kπ

)2
, 113

1116

(
L
kπ

)2
), we have that r3 < r1 < r2 and K3 > 0 if D1 ∈ (r3, r1) ∪ (r2,∞)

and K3 < 0 if D1 ∈ (0, r3) ∪ (r1, r2);
(v) when D2 = 113

1116

(
L
kπ

)2
, we have that r1 = r2 and K3 > 0 if D1 ∈ (r3, r1) ∪ (r1,∞) and K3 < 0 if

D1 ∈ (0, r3);
(vi) when D2 ∈ ( 113

1116

(
L
kπ

)2
,∞), we have that K3 > 0 if D1 ∈ (r3,∞) and K3 < 0 if D1 ∈ (0, r3).

Proof. We observe from (3.27) that K3 has the same sign as

F (D1)

D1 − ū
4D2

(
L
kπ

)4 =
aD2

1 + bD1 + c

D1 − ū
4D2

(
L
kπ

)4 .

We divide our discussions into the following cases.
If D2 ≤ 1

14

(
L
kπ

)2, we see that a ≤ 0 and F (0) > 0, and therefore F (D1) = 0 always has two roots r1

and r2 with r1 < 0 < r2 if a < 0 and one root r2 > 0 if a = 0. On the other hand, we can have from
straightforward calculations that

F (r3) =
1

D2(kπ
L )2

(
7
8

− 1
16D2(kπ

L )2

)

−
(

1
4

+
5

8D2(kπ
L )2

)

+ 5D2

(
kπ

L

)2

+
7
2

= 0

has two negative roots D2 = − 1
2

(
L
kπ

)2, D2 = − 1
4

(
L
kπ

)2, and one positive root D2 = 1
10

(
L
kπ

)2. Moreover,
F (r3) is monotone increasing in D2 for all D2 > 0, F (r3) < 0 if D2 < 1

10

(
L
kπ

)2 and F (r3) > 0 if
D2 > 1

10

(
L
kπ

)2. Hence we have that 0 < r3 < r2 in this case and the conclusions in case (i) hold.
When D2 > 1

14

(
L
kπ

)2, we have that a > 0 and F (0) > 0. On the other hand, we see the determinant
of the quadratic equation F (D1) = 0 in (3.27) is

� =
−1116D2

2(
kπ
L )8 − 684D2(kπ

L )6 + 81(kπ
L )4

4ū2
,

and it follows from straightforward calculations that � > 0 if D2 ∈ (0, 113
1116

(
L
kπ

)2
) and � < 0 if

D2 ∈ ( 113
1116

(
L
kπ

)2
,∞). Recall that F (r3) has a unique positive root D2 = 1

10

(
L
kπ

)2 and now we continue
our analysis in the following subcases:

If D2 ∈ ( 1
14

(
L
kπ

)2
, 113

1116

(
L
kπ

)2), then we have that F (D1) = 0 has two positive roots r1 and r2 with
r1 < r3 < r2, since F (r3) < 0 in this case. Therefore, we arrive at the conclusions in case (ii).

If D2 = 1
10

(
L
kπ

)2, we have that F (r3) = 0 and in particular we have that r3 = r1. Thus K3 is a straight
line as a function of D1, which implies case (iii).

If D2 ∈ ( 1
10

(
L
kπ

)2
, 113

1116

(
L
kπ

)2), we have that F (r3) > 0. Following the same arguments in case 2, we
can show case (iv) since one has in this case that r3 < r1 < r2. Moreover, if D2 = 113

1116

(
L
kπ

)2, we have
that r3 < r1 = r2, and this implies the statements in case (v).

Finally, if D2 ∈ ( 113
1116

(
L
kπ

)2
,∞), then the determinant of F (D1) is negative and F (D1) > 0 for all

D1 > 0. Therefore, we have that K3 > 0 if D1 > r3 and K3 < if D1 < r3. This finishes the proof of
Theorem 3.1. �

The graphes of K3 in Theorem 3.1 are illustrated in figures (1)–(6). As we can see in Theorem 3.1, K3

has a singularity at D1 = ū
4D2

(
L
kπ

)4

. However, we already show in (2.9), bifurcation occurs at (ū, v̄, χk)
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only if D1 	= ū
4D2

(
L
kπ

)4

. Actually, if D1 = ū
4D2

(
L
kπ

)4

, then we have that K3 = ∞ and formally the curve
Γ(s) must coincide with the χ-axis. However, we do not consider this singularity case in this paper.

3.3. Stability analysis

To study the stability of (uk(s, x), vk(s, x), χk(s)) around (ū, v̄, χk), we linearize (3.16) around this bifur-
cating solution. According to the principle of the linearized stability, e.g., Theorem 8.6 in [9], to show
that they are asymptotically stable, we need to prove that the each eigenvalue λ of the following elliptic
problem has negative real part:

D(u,v)F(uk(s, x), vk(s, x), χk(s))(u, v) = λ(u, v), (u, v) ∈ X × X .

We readily see that this eigenvalue problem is equivalent to
⎧
⎨

⎩

D1 (u′ − χk(s) (uv′
1(s, x) + uk(s, x)v′))′ + (ū − 2uk(s, x))u = λu, x ∈ (0, L),

D2v
′′ − vk(s, x) + βuk(s, x) = λv, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L,
(3.28)

where uk(s, x), vk(s, x) and χk(s) are as defined in Theorem 2.1.
We first observe that 0 is a simple eigenvalue of D(u,v)F(ū, v̄, χk) with an eigen-space equal to

span{(Qk cos kπx
L , cos kπx

L )}. In the coming analysis we assume that

min
k∈N+

χk = χk0 .

For each k 	= k0, we already know from Proposition 1 that when s = 0, (3.28) has an eigenvalue with
positive real part, then from the standard eigenvalue perturbation theory, e.g., in [20], it always has a
positive root for small s. This implies that the bifurcation branch Γk(s) around (ū, v̄, χk) is unstable for
each k ∈ N

+\{k0}.
In the following we are left to investigate the stability of Γk0(s) for |s| being small. It follows from

Corollary 1.13 in [9] that, there exist an internal I with χk0 ∈ I and continuously differentiable functions
χ ∈ I → μ(χ), s ∈ (−δ, δ) → λ(s) with λ(0) = 0 and μ(χk0) = 0 such that, λ(s) is an eigenvalue of (3.28)
and μ(χ) is an eigenvalue of the following eigenvalue problem

D(u,v)F(ū, v̄, χ)(u, v) = μ(u, v), (u, v) ∈ X × X ; (3.29)

moreover, λ(s) is the only eigenvalue of (3.28) in any fixed neighborhood of the origin of the complex plane
(the same assertion can be made on μ(χ)). We also know from [9] that the eigenfunctions of (3.29) can
be represented by (u(χ, x), v(χ, x)) which depend on χ smoothly and are uniquely determined through(
u(χk0 , x), v(χk0 , x)

)
=
(
Qk cos k0πx

L , cos k0πx
L

)
together with

(
u(χ, x)−Qk cos k0πx

L , v(χ, x)− cos k0πx
L

) ∈
Z.

Now we are ready to present another main result of our paper.

Theorem 3.2. For s ∈ (−δ, δ), s 	= 0, the solution (uk0(s, x), vk0(s, x)) of (3.16) is asymptotically stable if
K3 > 0 and it is unstable if K3 < 0. For each k ∈ N

+\{k0}, the bifurcating solutions (uk(s, x), vk(s, x)),
s ∈ (−δ, δ) are always unstable.

Proof. We differentiate (3.29) with respect to χ and set χ = χk0 , then since μ(χk0) = 0, we arrive at the
following system ⎧

⎨

⎩

D1u̇
′′ − ūv′′

1 − χk0 ūv̇′′ − ūu̇ = μ̇(χk0)u1, x ∈ (0, L),
D2v̇

′′ − v̇ + βu̇ = μ̇(χk0)v1, x ∈ (0, L),
u̇′(x) = v̇′(x) = 0, x = 0, L,

(3.30)

where (uk, vk) = (Qk cos k0πx
L , cos k0πx

L ). The dot-sign means the differentiation with respect to χ evalu-
ated at χ = χk0 and in particular u̇ = ∂u(χ,x)

∂χ

∣
∣
χ=χk0

, v̇ = ∂v(χ,x)
∂χ

∣
∣
χ=χk0

.
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Multiplying both equations of (3.30) by cos k0πx
L and then integrating over (0, L) by parts, we obtain

that

(
−D1

(
k0π
L

)2 − ū χk0 ū
(

k0π
L

)2

β −D2

(
k0π
L

)2 − 1

)
⎛

⎜
⎜
⎝

L∫

0

u̇ cos k0πx
L dx

L∫

0

v̇ cos k0πx
L dx

⎞

⎟
⎟
⎠ =

((
μ̇(χk0)Qk0 − ū

(
k0π
L

)2
)

L
2

μ̇(χk0)
L
2

)

.

We know that the coefficient matrix is singular, and hence in order for the system above to be solvable,
we must have that

μ̇(χk0) =
βū(k0π

L )2

D1(k0π
L )2 + βQk0 + ū

,

which is strictly positive. By Theorem 1.16 in [9], for s ∈ (−δ, δ), the functions λ(s) and −sχ′
k0

(s)μ̇(χk0)
have the same zeros and the same signs. Moreover

lim
s→0, λ(s) �=0

−sχ′
k0

(s)μ̇(χk0)
λ(s)

= 1.

Now, since K2 = 0, it follows that lims→0
s2K3μ̇(χk0 )

λ(s) = −1 and we readily see that sgn(λ(s)) = sgn(−K3)
for s ∈ (−δ, δ), s 	= 0. Therefore, we have proved Theorem 3.2. �

We conclude from Theorems 3.1 and 3.2 that, if D1 is small, the small amplitude bifurcating solution
(uk0(s, x), vk0(s, x)) is unstable for all D2 > 0. If D1 is large, (uk0(s, x), vk0(s, x)) is unstable for D2 <
1
14 ( L

kπ )2 and is stable for D2 > 1
14 ( L

kπ )2. Therefore, the smallness of one of the diffusion rates D1 and D2

is sufficient to inhibit the stability of this small amplitude solution and we may expect solutions of large
amplitude in this case as we shall see in the next section.

4. Asymptotic behavior of positive monotone solutions

We consider the following system
⎧
⎪⎪⎨

⎪⎪⎩

(D1u
′ − χΦ(u, v)v′)′ + (ū − u)u = 0, x ∈ (0, L),

D2v
′′ − v + h(u) = 0, x ∈ (0, L),

u′(x) < 0, v′(x) < 0, x ∈ (0, L),
u′(x) = v′(x) = 0, x = 0, L.

(4.1)

and the main purpose of this section is to study the asymptotic behavior of positive solutions to (4.1) as
χ/D1 approaches to infinity. In contrast to the small amplitude solutions obtained in Theorem 2.1, we are
interested in studying the existence of nonconstant positive solutions to (4.1) that have large amplitudes.
The last set of our main results can be summarized as follows.

Theorem 4.1. Assume that the conditions (1.6)–(1.9) are satisfied. Let (ui, vi) be a positive solution of
(4.1) with (D1, χ) = (D1,i, χi). Then we have that

lim
i→∞

L∫

0

ui(x)dx ≤ ūL; (4.2)

moreover, the following conclusions hold, after passing to a subsequence if necessary:
(i) Assume that χi

D1,i
→ ∞ as χi → ∞. Then we have that, either ui → ū∞ locally uniformly in (0, L]

and vi → h(ū∞) in C1([0, L]), where ū∞ ≤ ū is a positive constant or ui → 0 locally uniformly in
(0, L] and vi → 0 in C1([0, L]); ui(0) → u∞(0) ≥ ū in both cases.
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(ii) Assume that χi

D1,i
→ a ∈ [0,∞) as χi → ∞ or D1,i → ∞ (so χ∞ is comparably large). Then we

have that ui → u∞ in C1([0, L]) and vi → v∞ in C2([0, L]), where either (u∞, v∞) ≡ (ū, h(ū)) or it
is a nonconstant positive solution of the following system

⎧
⎨

⎩

u′
∞ − aΦ(u∞, v∞)v′

∞ = 0, x ∈ (0, L),
D2v

′′
∞ − v∞ + h(u∞) = 0, x ∈ (0, L),

u′
∞(x) = v′

∞(x) = 0, x = 0, L;
(4.3)

moreover u∞(x) > 0 in [0, L) and v∞(x) > 0 in [0, L].

In case (i), i.e., when the chemotaxis effect is greatly stronger than the cell motility, if the first al-
ternative occurs, cell population density and chemical concentration approach to a homogeneous station
which is below the environment carrying capacity. If the second alternative in case (i) occurs, u∞ concen-
trates at x = 0 and ui takes the form of a boundary spike at x = 0 for χi being large. Though a δ-type
aggregation/singularity is possible, the total population of cell shrinks to zero and the chemical is fully
consumed. In case (ii), i.e., when the chemotaxis rate and cell motility are comparably strong, we have
that the total cell population (hence chemical concentration) is positive in both alternatives; moreover,
the cell density matches the environment carrying capacity if it approaches to the homogeneous station in
the first alternative, while one expects spatial patterns of cell density and chemical concentration in the
second alternative. Our results suggest that in the limit of large chemotaxis attraction, cellular motility
tends to supports cell proliferation of chemotaxis models with logistic kinetics. It is therefore interest-
ing and biologically important to find or characterize optimal chemotaxis rate and/or cell motility that
maximizes the total cell population. We refer to [28,29] for the discussion on some related population
dynamics models.

Remark 1. There are extensive works available in literature investigating (4.3) and its time-dependent
multi-dimensional counterparts. For example, if Φ(u, v) = u and h(u) = βu for a constant β > 0, Biler
[2] established the existence of nonconstant radially symmetric solutions of (4.3) over domain Ω in R

N ,
N ≥ 1. For Φ(u, v) = u

v and h(u) = βu, we have that u∞ = Cva for some positive constant C. It then
follows from the classical results of Lin et al. [27] and Ni-Takagi [35,36] that, for D2 being sufficient
small and a ∈ (1,∞), (4.3) admits nonconstant positive solutions with v∞ concentrating at x = 0, which
also has the form of a boundary spike. Global existence and boundary spike solution on a plat form of
(4.3) in multi-dimension with Φ(u, v) = u

v+c , c being a positive constants are investigated in [47,48]. The
analysis of (4.3) with general Φ and h is a delicate problem which is out of scope of this paper. We also
want to mention that the time-dependent system of (1.1) has quite rich spatial-temporal dynamics as
demonstrated by the numerical studies in [11,39]. An alternative way to establish nontrivial solutions to
(4.1) is to study its shadow system. See [26,46,49] for example.

Before proving Theorem 4.1, we first give the following observation.

Lemma 4.2. Let (ui, vi) be a positive solution of (4.1). Then for any x ∈ (0, L], lim supi→∞ ui(x) < ∞.

Proof. We argue by contradiction and assume that there exists x0 ∈ (0, L] and a sequence i → ∞
such that limi→∞ ui(x0) = ∞. Then ui(x) → ∞ for all x ∈ [0, x0] since ui is monotone deceasing. By
integrating the v-equation in (4.1) over (0, L), we have that

L∫

0

vi(x)dx =

L∫

0

h(ui(x))dx ≥
x0∫

0

h(ui(x))dx → ∞,

which is a contraction to the uniform boundedness of ‖vi‖H2 in (2.14). �

Proof of (i) of Theorem 4.1: First of all, we readily see that (4.2) follows from (2.13). By Lemma 2.2, the
monotonicity of ui and Helly’s theorem, after passing to a subsequence as i → ∞, there exists a function
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u∞ which is nonnegative and nonincreasing on [0, L] such that ui(x) → u∞(x) pointwise on (0, L]. More-
over, thanks to (2.14) and the compact embedding H2(0, L) ⊂⊂ C1([0, L]), we have that, after passing
to yet another subsequence as i → ∞, vi(x) → v∞(x) in C1([0, L]), where v∞ is also nonincreasing on
[0, L].

We integrate the u-equation in (4.1) over (0, L) and have from Lemma 2.2 and Fatou’s lemma that

L∫

0

u∞ ≤ lim
i→∞

inf

L∫

0

ui ≤ ūL. (4.4)

On the other hand, we integrate the u-equation over the interval (x,L) and have that

D1,iu
′
i(x) − χiΦ(ui, vi)v′

i(x) = Fi(x), (4.5)

where Fi(x) =
∫ L

x
(ū − ui)ui. Integrating (4.5) from x to L, dividing it by χi and then sending i → ∞,

we obtain from Lemma 2.2 that
∫ L

x
Φ(u∞(y), v∞(y))v′

∞(y)dy = 0 for any x in (0, L], which implies that

Φ(u∞, v∞)v′
∞(x) = 0, a.e. x ∈ [0, L]; (4.6)

Moreover, we can show that v∞ satisfies
{

D2v
′′
∞ − v∞ + h(u∞) = 0, x ∈ (0, L),

v′
∞(x) = v′

∞(x) = 0, x = 0, L.
(4.7)

We now divide our discussions into the following two cases. If u∞ ≡ ū∞ is a positive constant, we
must have from (4.7) that v∞ ≡ h(ū∞). Moreover we have from (4.4) that ū∞ ≤ ū. If u∞ 	≡ ū∞ > 0
for x ∈ (0, L], we claim that ui → 0 in (0, L]. We argue by contradiction and suppose that there exists
x0 ∈ (0, L) such that u∞ > 0 for x ∈ (0, x0) and u∞ ≡ 0 for x ∈ (x0, L]. There are two possibilities to
consider: (a) x0 = L. In this case u∞(x) > 0 in [0, L], which implies through (4.6) that v′

∞(x) ≡ 0 hence
v∞ is a constant, and therefore according to (4.7) u∞ must also be a constant, denoted by ū∞; however,
this is impossible according to our assumption that u∞ 	≡ ū∞ unless ū∞ = 0 which is just what we want
to prove; (b) x0 ∈ (0, L). In this case, we have from (1.7) and (4.6) that v′

∞ ≡ 0 in [0, x−
0 ]. Note that

v ∈ C1([0, L]). Therefore, we have v∞ ≡ one positive constant in [0, x−
0 ] hence u∞ ≡ another positive

constant in (0, x0) in light of (4.7), otherwise u∞ ≡ 0 in (0, x0], hence in (0, L] since u∞ is nonincreasing
in [0, L], and therefore our claim is proved. On the other hand, we have that

{
D2v

′′
∞ − v∞ = 0, x ∈ (x0, L),

v′
∞(L) = 0.

(4.8)

Therefore, v′′
∞(x) > 0 in (x0, L) and we have that limx→x+

0
v′

∞(x) < 0; however this is impossible since
limx→x−

0
v′

∞(x) = 0 and v∞(x) ∈ C1([0, L]). Therefore, we must have that ui → 0 in (0, L]. Moreover, it
is easy to see from Lemma 2.2 that ui(0) > ū hence u∞(0) ≥ ū.

Proof of (ii) of Theorem 4.1: In light of (2.15) in Lemma 2.3 and Lemma 4.2, we see that as χi

D1,i
→

a ∈ [0,∞), u′′
i and v′′

i are uniformly bounded for all i. By Azela–Ascoli theorem, ui → u∞ in C1([0, L])
as i → ∞, after passing to a subsequence. Then we conclude from (4.5) that

u′
i(x) − χi

D1,i
Φ(ui, vi)v′

i(x) =
1

D1,i
Fi(x).

Sending i to ∞, we readily have that

u′
∞ − aΦ(u∞, v∞)v′

∞ = 0, ∀x ∈ (0, L).

Similarly, we can show that v∞ satisfies (4.7).



51 Page 22 of 25 Q. Wang, J. Yan and C. Gai ZAMP

On the other hand, we integrate the ui equation over (0, L) and have that
∫ L

0
ui(ū−ui) = 0. Applying

the Lebesgue’s dominated convergence theorem we have that
L∫

0

u∞(ū − u∞) = 0.

Remind that ui(0) > ū hence u∞(0) ≥ ū. Therefore, if u∞ is a constant it must be ū hence v̄ equals h(ū)
according to (4.7). If u∞ and v∞) are not constants, it is easy to see that they satisfy (4.3). To show
that u∞(x) and v∞(x) are strictly positive on [0, L) and [0, L] respectively, we argue by contradiction.
If v∞(L) = 0, we reach a contradiction to Hopf’s boundary lemma in (4.7), unless v∞ ≡ 0 which is
impossible; if v∞(x) = 0 in [0, x0) for some x0 ∈ (0, L], we have that v′

∞(x0) = 0 and again we reach a
contradiction. Therefore v∞(x) > 0 for x ∈ [0, L]. To show u∞(x) > 0 in [0, L), we suppose that there
exists x0 ∈ [0, L) such that u∞ ≡ 0 in (x0, L], then we must have from (4.7) that v∞ ≡ 0 in (x0, L) which
is impossible. Therefore (ii) is proved. �

Remark 2. In both case (i) and case (ii), we know from that Fatou’s Lemma and (4.2) that the limit
of total cell population must be finite in the limit of large chemotaxis attraction and/or cell motility.
Apparently, this is due to the presence of logistic kinetic term from which (4.2) applies. In case (i), when
ui converges to a boundary spike at x = 0, we know that u∞(0) > ū thanks to Lemma 2.2 and it is
unknown whether or not it can be ∞. Therefore, a δ-type aggregation/singularity at x = 0 is possible in
this case. However, in case (ii), we have that u∞ is always bounded in [0, L] in virtue of Lemma 2.2, and
hence a δ-type aggregation is impossible in this case.

5. Conclusion and discussion

In this paper, we establish the sufficient condition χ > mink∈N+ χk for the existence of nonconstant
positive solutions of (1.1). This condition is the same as that when the constant solution (ū, v̄) of (1.1)
loses its stability to nonconstant positive solutions. See Proposition 1. We carry out global analysis of
local bifurcation branches and show that they always stay within the first quadrant of (X × X ) × R and
all noncompact continuum can extend to infinity only in the positive direction of the χ-axis. Stability
of the bifurcating solutions around (ū, ū, χk) has also been investigated rigorously. It is shown that the
bifurcation diagram of (1.1) is of pitchfork type; see Proposition 2. However, due to the complexity and
difficulty in computations, we only consider the simpler model (3.16) and establish the stability criteria of
the bifurcating solutions (uk(s, x), vk(s, x)). Our results show that if one of the diffusion rates D1 and D2

is small, the small amplitude solution (uk(s, x), vk(s, x)) is unstable. If the cell motility D1 is large, the
bifurcating solution is stable if D2 < 1

14 ( L
kπ )2 and unstable if D2 > 1

14 ( L
kπ )2. Therefore, we may expect

that system (1.1) admits large amplitude solutions in these cases. Moreover, we establish the existence
of nonconstant positive solutions of (1.1) with large amplitude, which has also been formally presented
in [30]. Compared with the models studied by Wang and Xu [54], our model with logistic cellular growth
does not have the feature that the cell population is preserved. However, the logistic growth prevents the
solutions from blowing up into a δ-function. From the viewpoint of mathematical analysis, the logistic
growth term inhibits the application of Sturm oscillation theory to (1.2), which is an essential tool that
has been used in [54] to show the emergence of a δ function as χ/D1 → ∞.

There are also some interesting questions that have not been considered in our paper. The existence
and the structure of nonconstant positive solution to (4.3) can be an interesting question to probe in
the future. Moreover, the stability of the solutions with patterns is also a very interesting and delicate
problem that deserves future attention (e.g., [24]). Our results in Theorem 4.1 suggest that the strength
of chemotaxis and cell motility play very important roles in determining the total cell population, and
therefore, it is mathematically interesting and biologically important to find or characterize optimal
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(large) chemotaxis and diffusion rate that maximize the total cell population. Obviously, one can also
investigate the models over a multi-dimensional domain, even for Ω with special geometries.
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