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Abstract7

A hybrid asymptotic-numerical approach is developed to study the existence and linear stability of steady-8

state hotspot patterns for a three-component 1-D reaction-diffusion (RD) system that models urban crime9

with police intervention. Our analysis is focused on a new scaling regime in the RD system where there are10

two distinct competing mechanisms of hotspot annihilation and creation that, when coincident in a parameter11

space, lead to complex spatio-temporal dynamics of hotspot patterns. Hotspot annihilation events are shown12

numerically to be triggered by an asynchronous oscillatory instability of the hotspot amplitudes that arises from13

a secondary instability on the branch of periodic solutions that emerges from a Hopf bifurcation of the steady-14

state solution. In addition, hotspots can be nucleated from a quiescent background when the criminal diffusivity15

is below a saddle-node bifurcation threshold of hotspot equilibria, which we estimate from our asymptotic16

analysis. To investigate instabilities of hotspot steady-states, the spectrum of the linearization around a17

two-boundary hotspot pattern is computed, and instability thresholds due to either zero-eigenvalue crossings18

or Hopf bifurcations are shown. The bifurcation software pde2path is used to follow the branch of periodic19

solutions and detect the onset of the secondary instability. Overall, these results provide a phase diagram in20

parameter space where distinct types of dynamical behaviors occur. In one region of this phase diagram, where21

the police diffusivity is small, a two-boundary hotspot steady-state is unstable to an asynchronous oscillatory22

instability in the hotspot amplitudes. This instability typically triggers a nonlinear process leading to the23

annihilation of one of the hotspots. However, for parameter values where this instability is coincident with24

the non-existence of a one-hotspot steady-state, we show that hotspot patterns undergo complex “nucleation-25

annihilation” dynamics that are characterized by large-scale persistent oscillations of the hotspot amplitudes.26

In this way, our results identify parameter ranges in the three-component crime model where the effect of police27

intervention is to simply displace crime between adjacent hotspots and where new crime hotspots regularly28

emerge “spontaneously” from regions that were previously free of crime. More generally, it is suggested that29

when these annihilation and nucleation mechanisms are coincident for other multi-hotspot patterns, the problem30

of predicting the spatial-temporal distribution of crime is largely intractable.31

1 Introduction32

Crimes due to residential burglaries are not generally uniformly distributed within cities. Instead, they are denser33

in some areas and sparser in others, which results in crime patterns that tend to be spatially localized in certain34

hotspots of criminal activity [3] (see also [31]). The development of agent-based and PDE continuum-based35

mathematical modeling approaches to predict spatial patterns of urban crime originates from the foundational36

studies in [25, 24, 23] that are based on postulated interactions between two primary field variables: the attrac-37

tiveness of the site for burglary and the density of criminals. A key ingredient in their modeling framework is38
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that crime hotspots can result from a “near-repeat” victimization effect, which suggests that a crime at one site39

can create an environment that encourages further crime events near that site within a certain time period [3].40

To model the effect of police intervention on crime hotspots two distinct approaches have been used. By using41

agent-based simulation modeling, various detailed real-world policing strategies can and have been incorporated42

(cf. [10], [5]). A second direction, more amenable to analysis, is to formulate and analyze three-component43

PDE-based RD systems that include the police density as an extra field variable (cf. [10], [17], [32], [21], [27],44

[4]). For an extended three-component system, an optimal control strategy for the policing effort, which tracks45

a dynamically evolving crime pattern, was developed in [32] to minimize the overall crime rate.46

One primary goal of this article, as discussed below, is to analyze two competing mechanisms that are47

responsible for producing complex spatio-temporal hotspot patterns for a three-component 1-D RD model of48

urban crime with police deployment. On the interval |x| < L, this RD system is given in dimensionless form by49

At = ε2Axx −A+ ρA+ α , (1.1a)

ρt = D(ρx − 2ρAx/A)x − ρA+ γ − α− ρU , (1.1b)

τUt = D(Ux − qUAx/A)x , (1.1c)

where Ax(±L) = ρx(±L) = Ux(±L) = 0. Here A(x, t) is the attractiveness of the environment to burglary,50

while ρ(x, t) and U(x, t) are the population densities of criminals and police, respectively. The constant α > 051

is the spatially uniform baseline attractiveness, γ − α represents the constant rate at which new criminals are52

introduced, D is the criminal diffusivity, and Dp ≡ D/τ is the police diffusivity. The chemotactic drift term53

−2D(ρAx/A)x represents the tendency of criminals to move towards sites with higher attractiveness. Likewise,54

the police are assumed to undergo a biased random walk toward areas of higher attractiveness, with the parameter55

q > 1 measuring the degree of focus in the police patrol towards the maxima of the attractiveness field A. In56

particular, the choice q = 2 is the “cops-on-the-dots” strategy (cf. [10, 32]) where the police have the same drift57

tendency as the criminals towards maxima of A. Moreover, we will assume, as in [13] and [26], that58

γ > 3α/2 . (1.2)

On this range of γ, the uniform steady-state solution to (1.1) in the absence of police, given by Ae = γ and59

ρe = 1− α/γ, is unstable as ε→ 0 to the formation of hotspots [26]. By integrating (1.1c) over the domain, we60

conclude that the total “mass” of police is conserved in time, and we define U0 by61

U0 ≡
∫ L

−L
U(x, t) dx . (1.3)

To analyze (1.1) it is convenient to introduce the new variables V and u, as introduced in [13, 26, 4], defined by62

ρ = V A2 , U = uAq . (1.4)

In terms of these variables, (1.1) transforms on −L < x < L to63

At = ε2Axx −A+ V A3 + α , (1.5a)

(V A2)t = D(A2Vx)x − V A3 + γ − α− uV A2+q , (1.5b)

τ(uAq)t = D(Aqux)x . (1.5c)

Our analysis of (1.1) and (1.5) will focus on the singularly perturbed limit ε ≪ 1, where the attractiveness64

field can be localized within certain hotspot regions. A numerically-computed two-hotspot steady-state pattern65

from the time-dependent problem (1.1) is illustrated in Figure 1 on the domain [−3, 3] for q = 2 and q = 3, with66

the other parameters as in the figure caption. For q = 3 we observe from this figure that the spatial extent of U67

is more focused as compared to the “cops-on-the-dots” case q = 2.68
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Figure 1: Two-hotspot steady states of (1.1), with q = 2 (left) and q = 3 (right), computed from FlexPDE [6]
for an initial condition that is a random perturbation of the spatially uniform steady-state. Parameters: α = 1,
γ = 2, ε = 0.05, L = 3, D = 4 and U0 = 5.

When U0 = 0, (1.1) reduces to a two-component PDE system, which was first derived and analyzed in69

[25, 24]. This reduced system has been studied extensively. A rigorous existence theory was established in70

[20, 19, 22]. The computation of global snaking-type bifurcation diagrams was undertaken in [14] for the regime71

where α < γ < 3α/2. Hotspot equilibria for the regime D ≫ 1 were constructed formally in [13] using matched72

asymptotic expansions and established rigorously in [1] by using a Lyapunov-Schmidt reduction. A weakly73

nonlinear analysis was implemented in [8] to analyze the emergence of spatial patterns near the Turing bifurcation74

point associated with the spatially uniform steady-state. The nucleation behavior of hotspot patterns and their75

slow dynamics in the regime D = O(1) was analyzed in [26] in the singular limit ε≪ 1.76

In contrast, there are relatively few studies for the analysis of spatio-temporal pattern formation for the77

three-component crime model with police. For the regime D = O(ε−2) ≫ 1, the existence and linear stability of78

hotspot steady-states for the simple police interaction model, in which −ρU in (1.1b) was replaced by −U , was79

analyzed in [27]. These results were extended in [4], where the predator-prey type police interaction as given80

in (1.1b) was considered for the regime D = O(ε−2). One key result of these studies was the identification of a81

Hopf bifurcation for steady-state hotspot patterns that leads to asynchronous oscillations in the amplitudes of82

the hotspots. This initial instability effectively displaces crime between adjacent spatial regions, as consistent83

with that observed in certain field studies [2]. More recently, in [21] a weakly nonlinear analysis of the three-84

component RD model, using an alternative dimensionless formulation to (1.1) and in the non-singular limit,85

was implemented to characterize the bifurcation properties of the spatially uniform steady-state. For a certain86

parameter regime, this rigorous analysis established the existence of a Hopf bifurcation that initiates large-scale87

pattern formation and the oscillations that occur far from the spatially uniform state. Numerical computations88

in [21] have illustrated that, in the fully nonlinear regime, (1.1) can exhibit a wide range of highly complex89

spatio-temporal hotspot patterns that await a theoretical understanding.90

We will analyze the steady-state and linear stability of crime hotspots that occur for (1.1) in the singular91

limit ε ≪ 1, but where D = O(1). By focusing on the asymptotic regime D = O(1), our main goal is to92

hopefully incorporate into a single scaling regime two distinct competing mechanisms that we conjecture to be93

key ingredients for producing complex spatio-temporal dynamics of hotspot patterns; one mechanism to annihilate94

hotspots and a further mechanism to nucleate new hotspots from a quiescent background. For the two-component95

RD urban crime model without police, it was shown in [26] that when D = O(1) new hotspots of criminal96
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activity can nucleate from a crime-free quiescent background as a consequence of a saddle-node bifurcation point97

of hotspot equilibria. For the three-component model (1.1), but in the scaling regime D = O(ε−2) ≫ 1, hotspot98

nucleation behavior does not occur. Instead, it was shown in [4] from a nonlocal eigenvalue problem (NLEP)99

linear stability analysis that, on a certain range of D, the linearization of a steady-state multi-hotspot pattern100

can undergo a Hopf bifurcation as τ is increased, which leads to asynchronous temporal oscillations in the hotspot101

amplitudes. Since the police diffusivity is Dp = D/τ , this regime occurs when the police response is sufficiently102

sluggish with Dp below a threshold. Full numerical computations in [4] have suggested that if this oscillatory103

instability is unstable it typically will lead to a non-monotonic annihilation of certain hotspots in the pattern.104

Undertaking a steady-state and linear stability analysis of hotspot patterns for (1.1) when D = O(1) is much105

more intricate than for the D = O(ε−2) regime studied in [4] and the D = O(1) regime for the two-component106

model with no police studied in [26]. One key challenge for constructing hotspot steady-states for (1.1) with107

D = O(1) in the singular limit ε → 0 is to analyze the effect of certain nonlocal terms. Our analysis will show108

that saddle-node bifurcations still occur for steady-state solutions even in the presence of police, and that the109

oscillatory instabilities of the hotspot amplitudes discovered in [4] still persist in this new scaling regime.110

Figure 2: Left: Hotspot nucleation process as D is slowly decreased in time with D = 4 − 10−5t ; Right: A
competition instability as D is increased leading to the monotonic collapse of a hotspot with D = 30+10−5t. The
colormap based on the amplitude of A is shown as D is changed. See Appendix C for movies of these processes.
Parameters: α = 1, γ = 2, ε = 0.05, q = 3, U0 = 5, L = 3 and τ = 1.

From numerical simulations of (1.1) we now illustrate a few dynamical processes that can occur for hotspot111

patterns of (1.1) when ε → 0 and D = O(1). Firstly, new hotspots of criminal activity can be nucleated in112

low crime regions when the criminal diffusivity D is decreased. This process is illustrated in the left panel of113

Figure 2 for an initial condition consisting of a two-hotspot steady-state solution to (1.5) when D is varied in114

time as D = 4 − 10−5t. As D is gradually decreased, the initial pattern becomes unstable and new hotspots115

are nucleated at the domain boundary and in between two adjacent hotspots. For the same parameter set, but116

where D is gradually increased in time as D = 30+ 10−5t, in the right panel of Figure 2 we show the monotonic117

collapse of one hotspot in the multi-hotspot pattern as D increases past a threshold Dc. The surviving hotspot118

then undergoes a slow subsequent drift towards its steady-state location. This phenomenon is referred to as119

competition instability. Finally, when τ is large enough and when D < Dc, Figure 3 shows that the two-hotspot120

steady-state is unstable to an asynchronous oscillatory instability of the hotspot amplitudes, which ultimately121

annihilates one of the hotspots in an oscillatory collapse. The surviving hotspot then drifts over a very long time122

period towards the domain midpoint. Movies of these three processes are given in Appendix C.123
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Figure 3: Annihilation of hotspots arising from an asynchronous oscillatory instability. Left: Asynchronous
oscillatory instabilities of hotspot amplitudes occur when τ exceeds a Hopf bifurcation boundary. Middle: Long
time behaviour of the remaining hotspot. Right: The spot amplitudes of A at x = ±1.5 computed numerically
from the full PDE system (1.1). See Appendix C for a movie of the oscillatory collapse. Parameters: α = 1,
γ = 2, ε = 0.05, q = 3, U0 = 5, L = 3, τ = 10 and D = 60.

To identify parameter ranges where both hotspot nucleation and asynchronous hotspot amplitude oscillations124

can be coincident in the D = O(1) regime, we will focus on a specific two-boundary hotspot pattern. For this125

pattern we will provide a phase diagram in the τ versus D parameter plane where distinctly different hotspot126

dynamics can occur. In one region of this phase diagram, we show that the combined effect of hotspot nucleation127

and annihilation can lead to persistent large scale oscillations of the hotspot amplitudes, which we refer to as128

nucleation-annihilation dynamics. Moreover, by using translation invariance and symmetry, we show that the129

phase diagram for this canonical two-boundary hotspot pattern still applies to some multi-hotspot patterns that130

replicate the two-boundary hotspot pattern. This is illustrated in Figure 4, where a multi-hotspot pattern that131

replicates the two-boundary hotspot pattern three times is shown to exhibit nucleation-annihilation dynamics at132

a predicted point in the linear stability phase diagram of the canonical two-boundary hotspot pattern. Based on133

our detailed case study of two-boundary hotspot patterns, and together with a few further numerical experiments,134

we conjecture that nucleation-annihilation dynamics are a key mechanism for generating complex spatio-temporal135

hotspot dynamics for (1.1). Overall, our proposed mechanism is reminiscent of the merging-emerging dynamics136

uncovered in [16] and [9] for the 1-D Keller-Segel chemotaxis model with logistic growth. In these studies it was137

shown that the dynamical pair-wise merging of localized peaks, together with their nucleation from a quiescent138

background via a Turing instability whenever the inter-peak separation exceeded a threshold, were the underlying139

mechanisms for highly irregular, but persistent, spatio-temporal dynamics.140

The outline of this paper is as follows. In §2 we use a formal singular perturbation analysis in the limit141

ε → 0 to construct hotspot steady-state solutions to (1.5). For the steady-state problem, (1.1) reduces to a142

singularly perturbed nonlocal two-component boundary-value problem (BVP). Based largely on the derivation143

of a new explicit formula for the homoclinic connection characterizing the hotspot profile, we provide asymptotic144

predictions for the steady-state hotspot amplitude that are rather accurate even for only moderately small ε.145

When the police deployment U0 is below a threshold, hotspot steady-state solutions are shown to exist provided146

that D > Dcrit,ε. This critical value is the minimum value of D at which the outer limit of the steady-state147
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Figure 4: A multi-hotspot steady-state that consists of three replicates of the canonical two-boundary hotspot
pattern in Figure 11 with parameters α = 1, γ = 2, ε = 0.03, q = 3, L = 3 and U0 = 3, which must be three
times as large as the value U0 = 1 used for the canonical phase diagram in the right panel of Figure 11. Left:
hotspot steady-state when D = 1.7. Right: Full PDE simulations showing nucleation-annihilation dynamics for
the indicated point in the shaded Region A of the phase diagram in Figure 11 where D = 1 and τ = 40.

solution exists, and is found to closely approximate a saddle-node bifurcation point for the existence of hotspot148

steady-states. Near this critical value of D, hotspots are nucleated from a quiescent background. In §3 we provide149

a higher order analysis, extending and improving that in [26] for the case of no police, to obtain an accurate150

asymptotic prediction of the hotspot nucleation threshold Dcrit,ε when U0 ≥ 0. This analysis relies on a normal151

form equation derived in [12] in the study of self-replication behavior of mesa patterns. In §3 we also present152

global bifurcation branches of hotspot equilibria as computed using the continuation software pde2path [29].153

In §4 we study the linear stability of two specific steady-state hotspot patterns. For a one-hotspot steady-154

state solution, we derive an NLEP that has three distinct nonlocal terms. From a numerical study of this NLEP155

we show that one-hotspot steady-states are always linearly stable. For a two-boundary hotspot steady-state156

solution, in §4.3 we numerically solve the eigenvalue problem for the linearization to construct a linear stability157

phase diagram in the τ versus D parameter space that delineates ranges of parameters where dynamically158

distinct solution behaviors. The behavior of the spectrum of the linearization as we cross stability boundaries159

is illustrated. Nucleation-annihilation dynamics, resulting in large-scale persistent oscillations of the hotspot160

amplitudes, is found to occur in one region of this phase diagram. Finally, in §5 we remark on some possible161

implications of our study, and we discuss a few problems that warrant further investigation.162

2 The Steady State Hotspot Solution163

In this section, we study the steady-state problem for (1.5) in the limit ε→ 0. To construct a K-hotspot steady-164

state solution with K ≥ 1, we use the method of matched asymptotic expansions and follow the approach in165

[26]. That is, we first construct a single hotspot solution centered at x = 0 on (−l, l) such that l = L/K. We166

then apply a “gluing” technique to determine K-hotspot steady-states. The steady-state problem for (1.5) on167

6




the canonical domain |x| ≤ l, with no-flux conditions Ax = Vx = ux = 0 at x = ±l, is168

ε2Axx −A+ V A3 + α = 0 , (2.1a)

D(A2Vx)x − V A3 + γ − α− uV A2+q = 0 , (2.1b)

D(Aqux)x = 0 . (2.1c)

From integrating (2.1c) with ux(±l) = 0, we find that u is a constant. By using U = uAq and (1.3), we get169

u =
U0∫ L

−LA
q dx

=
U0

K
∫ l
−lA

q dx
, (2.2)

where U0 is the constant total police deployment. In this way, the three-component steady-state problem (2.1)170

reduces to the following two-component, but nonlocal, BVP:171

ε2Axx −A+ V A3 + α = 0 , |x| ≤ l ; Ax(±l) = 0 , (2.3a)

D(A2Vx)x − V A3 + γ − α− U0

K
∫ l
−lA

q dx
V A2+q = 0 , |x| ≤ l ; Vx(±l) = 0 . (2.3b)

This system has a similar structure to the steady-state problem in [26] but it contains an extra nonlocal172

term, which makes the analysis much more intricate than in [26]. A naive asymptotic analysis would be to let173

A ∼ A0/ε = O(ε−1) in the hotspot inner region, which has the effect of neglecting the α term in (2.3a) to leading174

order. Upon doing so, this makes the homoclinic solution satisfy A0(y) → 0 as y → ∞, where y ≡ x/ε [26].175

However, this leading order analysis is not sufficiently accurate for evaluating the non-local term
∫ l
−lA

q dx. As176

such, we must develop a more sophisticated approach than in [26] to construct the hotspot steady-state that177

is based on a more accurate determination of the homoclinic profile. In this more refined approach, we will178

construct a solution with A = O(1) in the inner region, but where A will ultimately depend weakly on ε.179

We first introduce the inner variable y = x/ε in (2.3) to obtain on −∞ < y <∞ that180

Ayy −A+ V A3 + α = 0 , (2.4a)

D(A2Vy)y = ε2

(
V A3 − (γ − α) +

U0

K
∫ l
−lA

q dx
V A2+q

)
. (2.4b)

By expanding A ∼ A0 + εA1 + . . . and V ∼ V0 + ε2V1 + . . ., we obtain from (2.4b) that, to leading order, V = V0181

is a constant to be determined. Upon setting182

A0(y) =
w(y)√
V0

, (2.5)

we obtain from (2.4a) that w(y) is the homoclinic solution to183

wyy − w + w3 + b = 0 , w(0) > 0 , wy(0) = 0 , where b ≡ α
√
V0 > 0 . (2.6)

In Appendix A we derive the following new explicit result for the existence of a homoclinic solution to (2.6):184

Lemma 1 For 0 ≤ b < bc ≡ 2
3
√
3
, there is a unique homoclinic solution w(y) to (2.6) given explicitly by185

w(y) =
c(y)(1− 2w2

∞) + w∞
1 + c(y)w∞

, where c(y) ≡

√
2

1− w2
∞
sech(

√
1− 3w2

∞y) . (2.7)

Here w∞ > 0 is the smallest positive root of w3 − w + b = 0. The homoclinic solution satisfies w(y) → w∞ as186

|y| → ∞. We have b < w∞ < 3b/2 and that w∞ → 0 as b → 0. In the limit b → 0, we recover the usual leading187

order profile w =
√
2 sech(y) as in [26]. In terms of w∞, we have w(0) ≡ wm = −w∞ +

√
2(1− w2

∞)1/2.188

7



Proof 1 The explicit homoclinic profile (2.7) is derived in Appendix A. To show that w∞ lies on the range189

b < w∞ < 3b/2, we use b = α
√
V0 > 0 and set w∞ = nb > 0 in w3 − w + b = 0 to obtain that n satisfies190

B(n) ≡ n− 1

n3
= b2 > 0 . (2.8)

For b→ 0, we have n→ 1, so that w∞ ∼ b. We calculate B(1) = 0 and B′(n) = n−4(3− 2n), so that B′(n) > 0191

on 1 ≤ n < 3/2. Since B(3/2) = 4/27 = b2c , we conclude by the monotonicity of B(n) that for any b in 0 < b < bc,192

the minimal root of (2.8) must satisfy 1 < n < 3/2, which establishes that b < w∞ < 3b/2. As a result, if we193

define A0∞ ≡ limy→∞A0(y), we have that A0∞ satisfies194

α < A0∞ ≡ w∞√
V0

<
3α

2
. (2.9)

Remark 1 In our analysis below, we will derive a nonlinear algebraic equation for V0, which will show that195

V0 ≪ 1 as ε → 0 but with an intricate dependence on ε. This will yield that b = α
√
V0 ≪ 1 as ε → 0.196

However, by including the effect of b in the non-perturbative explicit expression (2.7) we retain a highly accurate197

approximation for the homoclinic solution. In this way, we avoid having to construct additional nested inner198

layers as was done in §5 of [26] in the absence of police, where the analysis there was instead based on perturbing199

around the leading order homoclinic profile w =
√
2 sech(y). One key finding of [26] was that a mid-inner200

boundary layer with y = O(− log ε) is needed to match the inner solution to an outer solution. As a consequence,201

the outer solution was defined on the renormalized domain xε < x < l, where xε ≡ −ε log ε (see §5 of [26]).202

Although our explicit formula for the homoclinic avoids the need to introduce nested inner layers, the fact that203

b≪ 1 indicates that we should still use the renormalized outer domain xε < x < l in our analysis below.204

We now analyze (2.3) on the renormalized outer region −l < x < −xε and xε < x < l. Since the hotspot205

solution is even, we only consider the range xε < x < l. On this range, the leading order outer solution is206

A ∼ a0(x) , V ∼ v0(x) , (2.10)

where a0(x) and v0(x) satisfy207

D(a20v0x)x − v0a
3
0 + γ − α− U0

KI
v0a

q+2
0 = 0 , v0 = g(a0) ≡

a0 − α

a30
. (2.11)

Here we have labeled I ≡ 2
∫ l
0 A

q dx. To match a0 and v0 to the inner solution, we require that208

a0(xε) = A0∞ = w∞/
√
V0 , v0(xε) = V0 . (2.12)

From Lemma 1, we observe that a0(xε) satisfies α < a0(xε) < 3α/2.209

By substituting v0 = g(a0) into the first equation in (2.11), we obtain the following BVP on xε < x < l:210

D(f(a0)a0x)x = R(a0) ≡ a0 − γ +
U0

KI
(a0 − α)aq−1

0 ; a0(xε) =
w∞√
V0
, a0x(l) = 0 . (2.13)

Here we have defined f(a0) by211

f(a0) ≡
3α− 2a0

a20
= a20g

′(a0) . (2.14)

For the well-posedness of (2.13), we need f(a0) > 0 on xε < x < l. A sufficient condition for this to hold is that212

a0(xε) < a0(x) < 3α/2.213
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To ensure this range for a0(x), we will now derive a sufficient condition for a0(x) to be monotone increasing.214

To do so, we need to analyze R(a0) in (2.13). We calculate that R(α) = α− γ < 0 and that215

R′(a0) = 1 +
U0

KI
qaq−2

0

(
a0 − α+

α

q

)
> 0 , (2.15)

for a0 > α. Therefore, since α < a0(xε), we have R(a0) < 0 on the interval a0(xε) < a0(x) < 3α/2 when216

R (3α/2) < 0. By using the expression for R(a0) in (2.13), we observe that R (3α/2) < 0 holds provided that the217

total police deployment U0 satisfies218

U0 < U0,max ≡ 2

(
2

3

)q−1 (γ − 3α/2)

αq
KI , (2.16)

where I = 2
∫ l
0 A

q dx. Observe that U0,max > 0 since γ > 3α/2 from (1.2). The inequality (2.16) provides a219

maximum threshold for the total level of police deployment for which steady state hotspot solutions can exist.220

We will assume below that there are limited police resources so that (2.16) is satisfied.221

Under the condition (2.16), which establish that R(a0) < 0 on a0(xε) < a0 < 3α/2, it follows that a0 is222

monotone increasing on xε < x < l. To see this, we integrate (2.13) and use a0x(l) = 0 to get223

Df(a0)a0x

∣∣∣l
x
= −Df(a0)a0x =

∫ l

x
R(a0(s)) ds .

Since R(a0) < 0 and f(a0) > 0 on α < a0(xε) < a0 < 3α/2, we conclude that a0x > 0 on this range.224

Next, we reduce (2.13) to a simple quadrature by multiplying both sides of (2.13) by f(a0)a0x and integrating225

the resulting expression using the boundary condition a0x(l) = 0. This yields that226

D

2
(f(a0)a0x)

2 =

∫ x

l
f (a0(η))R (a0(η)) a0η dη . (2.17)

Upon labeling µ ≡ a0(l), and using the monotonicity of a0, we conclude that227

D

2
(f(a0)a0x)

2 =

∫ a0(x)

µ
f(s)R(s) ds = G(µ; z)−G(a0; z) , (2.18)

where we have defined the anti-derivative G, upon using (2.13) for R, by228

G′(s; z) = −f(s)R(s) ≡ f(s)
(
γ − s− z(s− α)sq−1

)
, where z ≡ U0

KI
. (2.19)

After substituting f(s) from (2.14) into (2.19) and integrating once, we obtain that G(s; z) is given explicitly by229

G(s; z) = 2s− (2γ + 3α) log(s)− 3αγ

s
+ z

(
2sq

q
− 5αsq−1

q − 1
+

{
3α2 log(s) if q = 2

3α2 sq−2

q−2 if q ̸= 2

)
. (2.20)

Since f(a0) > 0 and R(a0) < 0 on a0(xε) < a0 < 3α/2, it follows that G′(s; z) > 0 on this range so that the230

inequality G(µ; z)−G(a0; z) > 0 is guaranteed. As a result, since a0x > 0, we obtain from (2.18) that231

f(a0)a0x =

√
2

D

√
G(µ; z)−G(a0; z) . (2.21)

By integrating the separable ODE (2.21) we get232

χ(a0(x); z) =

√
2

D
(x− xε) , where χ(a0(x); z) ≡

∫ a0(x)

a0(xε)

f(s)√
G(µ; z)−G(s; z)

ds . (2.22)
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Then, by setting x = l and a0(l) = µ we obtain an implicit equation for µ ≡ a0(l) given by233 √
2

D
(l − xε) = χ(µ; z) =

∫ µ

a0(xε)

f(s)√
G(µ; z)−G(s; z)

ds , where a0(xε) =
w∞√
V0
. (2.23)

Since the integral in (2.23) is improper at s = µ, to obtain a more tractable formula for χ(µ; z) we integrate it234

by parts by using f(s) = −G′(s)/R(s). In this way, we can determine χ(µ; z) in terms of a proper integral as235

χ(µ; z) = −
2
√
G(µ; z)−G(a0(xε); z)

R (a0(xε))
+ 2

∫ µ

a0(xε)

√
G(µ; z)−G(s; z)

(R(s))2
(
1 + z

(
qsq−1 − α(q − 1)sq−2

))
ds , (2.24)

where R(s) ≡ s− γ + z(s− α)sq−1 with z ≡ U0/(KI).236

We observe that χ(a0; z) is positive and monotonically increasing in a0 since χ′(a0; z) =
f(a0)√

G(µ;z)−G(a0;z)
> 0237

for U0 < U0,max. Since µ = a0(l) ≤ 3α/2, the largest possible value of µ is 3α/2, and so we define χmax by238

χmax ≡ χ (3α/2; z) . (2.25)

Upon fixing l, we conclude from (2.23) that the minimum value Dcrit,ε of D for which an outer solution exists is239

Dcrit,ε =
2(l − xε)

2

χ2
max

, where xε ≡ −ε log ε . (2.26)

Finally, we must determine V0 by matching the behavior of V in the inner and outer regions. To do so, we240

first expand V = V0 + ε2V1 + . . . in the inner region and collect O(ε2) terms in (2.4) to obtain that V1 satisfies241

D(A2
0V1y)y = V0A

3
0 − (γ − α) + zV0A

2+q
0 , where z =

U0

K
∫ l
−lA

q dx
. (2.27)

By using the expression A0 = w(y)/
√
V0 for the homoclinic we get242

D

V0
(w2V1y)y = H(y) , 0 < y <∞; H(y) ≡ 1√

V0
w3(y)− (γ − α) +

z

V
q/2
0

w2+q(y) . (2.28)

To match to the outer solution, we need the far-field behavior of V1 in (2.28) as y → ∞. Since
∫∞
0 H(y) dy does243

not exist owing to the fact that H(∞) ̸= 0, we rewrite the right-hand side of (2.28) by adding and subtracting244

H(∞). Then, upon integrating (2.28) for V1 and imposing the symmetry condition V1y(0) = 0, we obtain245

D

V0
w2V1y =

∫ y

0
(H(s)−H(∞)) ds+ yH(∞) ; H(∞) ≡ 1√

V0
w3
∞ − (γ − α) +

z

V
q/2
0

w2+q
∞ . (2.29)

Since w(y) → w∞ exponentially as y → +∞, we conclude that
∫∞
0 (H(s)−H(∞)) ds < ∞. By letting y → ∞246

in (2.29), we obtain the far field behavior247

V1y ∼ V0
Dw2

∞
(c0 + c1y) , as y → +∞ , (2.30)

where the constants c0 and c1 are given explicitly by248

c0 ≡
∫ ∞

0
(H(y)−H(∞)) dy =

1√
V0

∫ ∞

0

(
w3(y)− w3

∞
)
dy +

z

V
q/2
0

∫ ∞

0

(
w2+q(y)− w2+q

∞
)
dy , (2.31a)

c1 ≡ H(∞; z) =
1√
V0
w3
∞ − (γ − α) +

z

V
q/2
0

w2+q
∞ . (2.31b)
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Next we study the behavior as x→ xε of the outer solution v0(x). From (2.11), we find that v0(x) satisfies249

D(a20v0x)x = v0a
3
0 − (γ − α) + zv0a

q+2
0 , (2.32)

with v0(xε) = V0 and v0x(l) = 0. Since a0(xε) = w∞/
√
V0, we obtain from (2.32) that250

v0xx(xε) ∼
V0

Dw2
∞

(
1√
V0
w3
∞ − (γ − α) +

z

V
q/2
0

w2+q
∞

)
. (2.33)

Then, by expanding v0x(x) in a Taylor series we get251

v0x(x) = v0x(xε) + (x− xε)v0xx(xε) + . . . = v0x(xε)− xεv0xx(xε) + v0xx(xε)x+ . . . as x→ xε , (2.34)

where xε ≡ −ε log(ε). Now we enforce a continuity condition between (2.34) and (2.30). After using Vy = εVx,252

and V ∼ V0 + ε2V1, we obtain from (2.30) that253

v0x(x) =
1

ε
Vy ∼ εV1y = ε

c0V0
Dw2

∞
+

c1V0
Dw2

∞
x . (2.35)

We observe from (2.31b) and (2.33) that the second term in (2.35) matches identically with the v0xx(xε) term in254

(2.34). Therefore, to ensure that the other terms agree, we must have255

v0x(xε)− xεv0xx(xε) = ε
c0V0
Dw2

∞
. (2.36)

Next, by using (2.11) for v0 and (2.21) we calculate256

v0x =
1

a20
(f(a0)a0x) =

1

a20

√
2

D

√
G(µ; z)−G(a0; z) . (2.37)

Since a0(xε) = A0∞ = w∞√
V0

we conclude that257

v0x(xε) =
V0
w2
∞

√
2

D

√
G(µ; z)−G(A0∞; z) . (2.38)

Finally, by substituting (2.31a), (2.33) and (2.38) into (2.36), we obtain that V0 must satisfy258

1√
V0

∫ ∞

0

(
w3 − w3

∞
)
dy +

z

V
q/2
0

∫ ∞

0

(
w2+q − w2+q

∞
)
dy =

1

ε

√
2D
√
G(µ; z)−G(A0∞; z)

− xε
ε

(
1√
V0
w3
∞ − (γ − α) +

z

V
q/2
0

w2+q
∞

)
, (2.39)

where xε ≡ −ε log(ε). The final step in the derivation of the equation for V0 is to approximate the integral259

I ≡ 2
∫ l
0 A

qdx, which determines z by z = U0/(KI). Since q > 1, the dominant contribution to I arises from the260

inner region, and we can approximate I as261

I ∼ 2

∫ l

0
(Aq −Aq

0∞) dx+ 2lAq
0∞ = 2V

−q/2
0 (εJq + lwq

∞) , where Jq ≡
∫ ∞

0
(wq − wq

∞) dy , (2.40)

which yields262

z ∼ U0

2K

(
V

q/2
0

εJq + lwq
∞

)
. (2.41)
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With this approximation, (2.39) yields a nonlinear algebraic equation for V0263

ε√
V0
J3 + xε

(
w3
∞√
V0

− (γ − α) +
U0

2εK

w2+q
∞

(Jq + lwq
∞/ε)

)
+
U0

2K

J2+q

(Jq + lwq
∞/ε)

=
√
2D
√
G(µ; z)−G(A0∞; z) = 0 .

(2.42)
In (2.42) we have defined the generic integral Jp by Jp ≡

∫∞
0 (wp(y)− wp

∞) dy. From (2.42) we observe that264

formally V0 = O(ε2), but that the dependence on ε is rather intricate.265

Figure 5: Comparison between numerical and asymptotic results for ε−2V0 (left panel) and for A(0) (right
panel). The solid and dashed curves correspond to the asymptotic results with q = 3 and q = 2, respectively,
as computed from the nonlinear algebraic system (2.42) and (2.23). The circle and star points are obtained by
numerical simulations of (1.1) with q = 3 and q = 2, respectively. There is very close agreement between the
asymptotic and numerical results up to ε = 0.05. Parameters: l = 1, α = 1, γ = 2, D = 5, K = 1 and U0 = 1.

2.1 Numerical verification266

In this subsection we verify our asymptotic results for the hotspot steady state with full numerical simulations267

of (1.1) by FlexPDE [6] for q = 3 and for the “cops on the dots” case where q = 2. We observe that (2.42) is a268

highly implicit nonlinear algebraic equation for V0 owing to the following features:269

• w(y) depends on V0 through b in (2.6), with the leading order behavior w ∼
√
2sech(y) and w∞ =270

limy→∞w(y) ∼ α
√
V0 as V0 → 0.271

• z as given in (2.41) depends on V0 and appears in the function G(s; z) of (2.20).272

• Jp ≡
∫∞
0 (wp(y)− wp

∞) dy is integrable for integers p > 1 (see the details for analytically calculating Jp in273

Appendix B), but these integrals depend on V0. Note that by using w3
∞−w∞+ b = 0, we can rewrite (2.6)274

as wyy − (w − w∞) + (w3 − w3
∞) = 0. As a result, by integrating over 0 < y <∞ we get J1 = J3.275

• (2.42) contains µ = a0(l), which is given by (2.23) and it depends on z and V0.276

Since the equations (2.42) and (2.23) form a coupled system for the unknowns V0 and µ, which contains277

the terms w∞, z, Jp that depend on V0, we solve for V0 and µ numerically using Newton’s method. In Figure278

5, we show a very close agreement between the scaled asymptotic results ε−2V0 (left panel) and hotspot height279

12



Figure 6: The effect of U0 on the hotspot height A(0) (left) and the critical value of domain length lcrit (right)
for which hotspot nucleation will occur when l > lcrit. Parameters: l = 1, α = 1, γ = 2, q = 3, U0 = 1, K = 1,
and ε = 0.01, with D as indicated.

A(0) (right panel) with corresponding full simulation results of (1.1) computed using FlexPDE [6]. These plots280

show that, for the choices q = 3 and q = 2 of police drift, the asymptotic results predict with high accuracy281

the full numerical results over the full range 0 < ε < 0.05. In contrast, in the absence of police, the asymptotic282

approach in [26] based on perturbing from the leading order homoclinic solution for the hotspot profile provided283

a substantially poorer approximation for ε−2V (0) when ε ≥ 0.02 (see the right panel of Figure 4 of [26]).284

To determine how the total police deployment U0 affects the hot-spot steady state, in the left panel of Figure285

6 we plot the hotspot height A(0) versus U0 in the range U0 ∈ [0, 4]. This plot shows that the existence of286

police can effectively reduce the attractiveness of the environment to burglary. Moreover, we investigate how287

lcrit, defined as the critical value of the domain size for which new hotspots of criminal activity will be nucleated288

when l > lcrit, depends on U0. Qualitatively, the critical distance 2lcrit represents the maximum inter-hotspot289

separation that can occur before a new hotspot will be nucleated at the midpoint between adjacent hotspots. In290

the right panel of Figure 6 we plot lcrit versus U0, as computed from (2.26) for a fixed D. This plot shows, as291

expected intuitively, that with an increase in police deployment U0 there can be a larger inter-hotspot separation292

where no nucleation of new hotspots of criminal activity can occur. We remark that in both panels of Figure 6,293

A(0) and lcrit may not exist when the police deployment U0 is too large. When U0 is too large, the outer solution294

no longer exists and steady-state hotspot patterns cannot form.295

As we now remark, our detailed construction of a one-hotspot steady-state also applies to multi-hotspot296

steady-states by using translation symmetry and glueing to ensure a C2 global solution.297

Remark 2 To apply our one-hotspot steady-state results to a K-hotspot steady-state we simply set l = L/K in298

calculating the saddle-node threshold Dcrit,ε from (2.26) and (2.42). For a K-hotspot steady-state, and for D near299

the resulting saddle-node threshold, we predict that hotspot nucleation will occur at the spatial midpoint between300

two adjacent interior hotspots or on the domain boundaries at x = ±L, owing to reflection through the Neumann301

boundary conditions. This hotspot nucleation behavior is analyzed in detail from a normal form analysis in §3.302
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3 Global Bifurcation Structure and the Onset of Nucleation303

In this section we numerically compute global bifurcation diagrams of hotspot steady-state solutions, and we304

provide a more refined asymptotic theory than given in §2 to analyze the onset of nucleation behavior that occurs305

when l ≈ lcrit,ε, or equivalently when D ≈ Dcrit,ε, where Dcrit,ε is given in (2.26). Recall that Dcrit,ε denotes the306

minimum value of D for which a single hotspot steady-state will exist on the domain |x| ≤ l, while lcrit,ε is the307

maximum value of l for which a hotspot steady-state exists when the criminals have diffusivity D.308

3.1 Global bifurcation structure309

To compute global bifurcation diagram of hotspot steady-state solutions we use FlexPDE [6] and pde2path[29, 18]310

and we compare the full numerical results with the asymptotic result for the critical value Dcrit,ε derived in (2.26).311

These computations give a detailed view on how new hotspots are created near the endpoints x = ±l when D312

approaches a bifurcation point, which we denote by Dnum. In Figure 7, we show the full numerical bifurcation313

results of (1.5) for single-hotspot steady states computed using pde2path. The vertical axis on the bifurcation314

diagrams (a) and (c) is the boundary value A(l), and the horizontal axis is D. Panel (b) and (d) are plots of315

attractiveness A(x) at marked points in (a) and (c). The parameter values are q = 3,K = 1, U0 = 1, γ = 2, α =316

1, l = 1, with ε = 0.03 in the top panels (a), (b) and ε = 0.04 in the bottom panels (c), (d). Both bifurcation317

diagrams (a) and (c) show that starting from the bottom solution branch, the steady-state solution branch with318

one interior hotspot becomes unstable as D is decreased below the circled point Dnum. This branch is connected319

to a solution that has an interior hotspot together with a hotspot at each boundary. To show this, in panels (b)320

and (d) we plot the continuation of steady states by choosing a few points along the branch, where we observe321

that new hotspots of criminal activity can be nucleated at the domain boundary.322

The global bifurcation numerical results at the circled points shown in Figure 7 are verified with a full323

simulation of (1.1) using FlexPDE, where we numerically compute time-dependent simulations of (1.1) as D is324

gradually decreased until hotspot nucleation behavior is observed. From these simulations, we estimate that325

Dnum = 1.493 for ε = 0.03, Dnum = 1.434 for ε = 0.04,

which are exactly the circled points in Figure 7. Moreover, we compare the bifurcation points with the fold points326

shown in Figure 7 (a), (c). This is shown in Figure 8, where the blue solid line corresponds to bifurcation points,327

denoted by Dnum, and the purple dotted line corresponds to the fold points, denoted by Dfold. It is observed328

that Dnum and Dfold approach each other as ε→ 0.329

Next, we compare the leading order approximation Dcrit,ε derived in (2.26) with full simulation results. Recall330

that χ(µ; z) reaches its maximum at µ = 3
2α which determines χmax from (2.25). Moreover, it contains z, which331

relates to V0. To compute Dcrit,ε, we fix µ = 3
2α and compute V0 and Dcrit,ε simultaneously by applying Newton’s332

method. The result is shown in Figure 8, where the red dashed curve is the asymptotic result Dcrit,ε obtained333

from (2.26) by varying ε from 0.01 to 0.04, and the blue curve is obtained from full simulations using FlexPDE.334

From 8 we observe that this leading order prediction for the critical value of D is rather inaccurate unless ε335

is very small, while for larger ε it has the wrong qualitative dependence on ε. This motivates the need for a336

higher-order asymptotic theory to characterize the onset of hotspot nucleation.337

To provide a more accurate analytical theory for the onset of hotspot nucleation near x = ±l, we must338

construct a new boundary layer solution near the endpoints x = ±l when D is near the critical value Dcrit,ε.339

This leading order critical value was derived from the outer problem for aε(x) given by340

D [f(aε)aεx]x = aε − γ +
U0

KI
(aε − α)aq−1

ε , xε < x < l ; aε(xε) =
w∞√
V0

aεx(l) = 0 , (3.1)

where f(a0) is given in (2.14), I = 2
∫ l
0 A

qdx ∼ 2V
−q/2
0 (εJq + lwq

∞), and xε ≡ −ε log(ε).341

14



(a) (b)

(c) (d)

Figure 7: Continuation of steady states starting with single-hotspot for l = 1, α = 1, γ = 2, q = 3 and U0 = 1.
Panel (a) and (c) are bifurcation diagrams obtained by pde2path [29] with ε = 0.03 and ε = 0.04, respectively.
The circle corresponds to the bifurcation point Dnum at which the interior-hotspot pattern becomes unstable.
The cross corresponds to a fold point which is connected to a solution that has an interior hotspot together with
a hotspot at each boundary. Panel (b) and (d) show the profile of the attractiveness A at various values of D
specified on top. These values of D correspond to the marked points on the bifurcation diagram (left figure).
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Figure 8: Comparison between asymptotic and numerical results for the critical value of D at the onset of
nucleation. The solid blue curve, denoted as Dnum, is obtained from full time-dependent simulations of (1.1) by
FlexPDE. The red dashed curve is the leading order approximation Dcrit,ε given in (2.26). The yellow dotted
curve is the improved approximation in (3.25) that corresponds to Dmin,ε, in which Hl is computed in Table 1.
This curve closely approximates the purple dotted curve that corresponds to the fold points of the bifurcation
diagrams of Figure 7 as computed using pde2path [29]. Parameters: l = 1, α = 1, γ = 2, q = 3 and U0 = 1.

To illustrate how our previous analysis becomes invalid near the onset of nucleation, we determine the local342

behavior near x = l of the solution to (3.1) when D = Dcrit,ε, which corresponds to setting aε(l) = a0c = 3α/2.343

Near x = l, we put aε = a0c + ā(x), where ā ≪ 1 and ā(l) = 0. Upon substituting this into (3.1), we integrate344

once while using ā(l) = 0 to obtain for x near l that345

(
1

2
ā2
)

x

∼ βa20c(x− l) , where β ≡

(
γ − a0c − z(a0c − α)aq−1

0c

)
2Dcrit,ε

, and z =
U0

KI
. (3.2)

Upon integrating (3.2) and imposing ā(l) = 0, we obtain that ā ∼
√
βa0c(x− l) as x → l−. Therefore, the local346

behavior of the solution aε when D = Dcrit,ε is347

aε(x) ∼ a0c +
√
βa0c(x− l) , as x→ l− . (3.3)

From (3.3), we conclude that when D = Dcrit,ε and aε(l) = 3α/2, the solution aε(x) no longer satisfies the348

required no-flux condition aεx(l) = 0. This local analysis suggests that we need to construct a new boundary349

layer near x = l to characterize the onset of nucleation.350

3.2 The solution structure near the onset of nucleation351

In this subsection, we construct a new boundary layer solution that characterizes the onset of hotspot nucleation352

that occurs near the endpoints x = ±l when D is near the critical value Dcrit,ε. The overall analysis is similar to353

that done in [26] for the two-component urban crime model in the absence of police. In particular, we derive a354

normal form equation that has the same qualitative structure as that derived in [26], [12], but where the improved355

prediction for the nucleation threshold value of D now depends on the police deployment U0.356

To analyze the onset of nucleation, we first write (2.3) on xε < x < l in the form357

ε2Axx +A3(V − g(A)) = 0 , D
[
A2Vx

]
x
−A+ γ −A3(V − g(A))− zV A2+q = 0 , (3.4)
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where g(A) = (A− α)/A3, z = U0/(KI) and I =
∫ l
−lA

q dx. We let aε(x) and Dcrit,ε denote the solution to the358

renormalized outer problem (3.1) at the critical value where aε(l) = 3α/2 and vε(x) = g(aε(x)). In the outer359

region, defined away from both the hotspot core and a new thin boundary layer to be constructed near x = l,360

we expand the outer solution as361

A = aε + νaε,1 + . . . , V = vε + νvε,1 + . . . , Λ ≡ 1

D
= Λε + νΛε,1 + . . . , (3.5)

where the gauge function ν ≪ 1 and the constant Λε,1 are to be determined. By expandingD = Dcrit,ε+νDε,1+. . .362

and comparing it with the expansion of Λ, we conclude that363

Dcrit,ε =
1

Λε
, Dε,1 = −Λε,1

Λ2
ε

. (3.6)

Our focus below is to calculate the correction term Dε,1 for the critical value of the diffusivity threshold.364

To do so, we first substitute (3.5) into (3.4) and collect powers of ν. Assuming that ν ≫ O(ε2), we obtain365

that the leading order term aε satisfies the renormalized problem (3.1), while at the next order aε,1 satisfies366

[f(aε)aε,1]xx − Λεaε,1

(
1 + z

(
g(aε)a

2+q
ε

)
aε

)
= Λε,1

(
aε − γ + z(aε − α)aq−1

ε

)
, (3.7)

on the domain xε < x < l with aε,1(xε) = 0 and where, from (2.14), we have f(aε) ≡ (3α− 2aε)/a
2
ε. Our local367

analysis below will provide the required asymptotic boundary condition for aε,1 as x→ l−.368

Near x = l, we construct a thin boundary layer by introducing the new variables A1,V1, and s by369

A = a0c + δA1(s) + . . . , V = v0c + δ2V1(s) + . . . , s ≡ l − x

σ
, (3.8)

where a0c ≡ 3α/2 and v0c ≡ g(a0c) = 4/(27α2). The gauge functions δ ≪ 1 and σ ≪ 1 are to be determined.370

The choice of different scales for A and V is due to the fact that g′(a0c) = 0. We substitute (3.8) into (3.4) and371

perform a Taylor expansion of g(A) around a0c to obtain that372

ε2δ

σ2
A1ss + δ2a30c

[
V1 −

1

2
A2

1g
′′(a0c)

]
+ . . . = 0 ,

δ2

σ2
a20cV1ss = Λε

[
a0c − γ + zv0ca

2+q
0c

]
+ . . . , (3.9)

where from (2.11) for v0 we compute g′′(a0c) = −2a−4
0c , with a0c = 3α/2.373

To balance the terms in (3.9), we must choose the scales δ = σ = ε2/3. Then, upon using v0c = g(a0c) =374

(a0c − α)/a30c, we obtain to leading order that (3.9) becomes375

A1ss + a30c

[
V1 −

1

2
A2

1g
′′(a0c)

]
= 0 , V1ss = − 2β

a20c
, where β =

Λε

(
γ − a0c − z(a0c − α)aq−1

0c

)
2

. (3.10)

Since A and V have no-flux boundary conditions at x = l, we must impose that A1s(0) = V1s(0) = 0. By solving376

for V1 in (3.10) with V1s(0) = 0, we obtain that377

V1 = V10 − β
s2

a20c
, (3.11)

where V10 is an arbitrary constant. Upon substituting V1 into the A1 equation of (3.10), we get378

A1ss + a30c

(
A2

1

a40c
− β

a20c
s2 + V10

)
= 0 , 0 < s <∞ . (3.12)
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To obtain the core problem, as introduced in [26], [12], we simply rescale s and A1 by379

A1 = bU , s = ξy , where b = a0cβ
1/3 , ξ = β−1/6 . (3.13)

In this way, (3.12) transforms to the core problem [12]:380

Uyy + U2 − y2 + k = 0 , 0 < y <∞ , Uy(0) = 0 ; k ≡ a20cβ
−2/3V10 . (3.14)

In terms of the original variables, we obtain from (3.8), and (3.13) that the boundary layer solution near x = l,381

characterizing the onset of the nucleation of a hotspot, is given by the local solution382

A ∼ a0c + ε2/3a0cβ
1/3U(y) , V ∼ v0c + ε4/3

β2/3

a20c
(k − y2) , y ≡ β1/6ε−2/3(l − x) , (3.15)

where a0c = 3α/2, v0c = g(a0c) = 4/(27α2), and β is given in (3.10). In terms of the outer coordinate, we have383

Ax = −a0cβ1/2Uy . (3.16)

Therefore, upon matching to the local behavior as x→ l of the outer solution aε(x), as given by (3.3), we must384

have Uy → −1 as y → ∞.385

We observe that −U is the solution to the equation (3.4) in [12], where its solution behavior was established386

rigorously in Theorem 2 of [12]. We summarize this previous result for the convenience of the reader.387

Theorem 1 (From [12]) In the limit k → −∞, (3.14) admits exactly two solutions U = U±(y) with U ′ > 0 for388

y > 0, with the following uniform expansions:389

U+ ∼ −
√
y2 − k , U+(0) ∼ −

√
−k , (3.17)

U− ∼ −
√
y2 − k

(
1− 3 sech2

(√
−ky√
2

))
, U−(0) ∼ 2

√
−k . (3.18)

These two solutions are connected. For any such solution, let s ≡ U(0) and consider the solution branch k = k(s).390

Then, k(s) has a unique (maximum) critical point at s = smax and k = kmax. Numerical computations yield that391

kmax ≈ 1.46638 and smax ≈ 0.61512.392

We now proceed to compute the higher order correction term Dε,1 to Dcrit,ε. To do so, we need to derive the393

asymptotic boundary condition for aε,1 as x→ l−. This analysis is similar to that for no police (see [26]).394

Any solution to (3.14) with Uy → −1 as y → ∞ has asymptotics395

U ∼ −
√
y2 − k +O(y−4) ∼ −y + k

2y
+O(y−2) . (3.19)

By substituting (3.19) into (3.15) and matching with the outer solution aε,1(x) given in (3.7), we conclude that396

ν ≡ ε4/3 , and aε,1 ∼

(
a0ckβ

1/6

2

)
1

l − x
, as x→ l− . (3.20)

To solve (3.7) subject to (3.20), it is convenient to introduce the new variable ãε,1 defined by ãε,1 ≡ f(aε)aε,1.397

Therefore, as x→ l−, we have upon using f(a0c) = 0, f ′(a0c) = −2/a20c, and (3.3) that398

ãε,1 = f(aε)aε,1 ∼
(
f(a0c) + f ′(a0c)a0cβ

1/2(x− l)
)(a0ckβ1/6

2

)
1

l − x
= β2/3k . (3.21)
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In this way, we conclude by setting ãε,1 ≡ f(aε)aε,1 in (3.7), and using (3.21), that ãε,1 satisfies399

(ãε,1)xx −
Λε

f(aε)

(
1 + z

(
g(aε)a

2+q
ε

)
aε

)
ãε,1 = Λε,1

(
aε − γ + z(aε − α)aq−1

ε

)
, xε < x < l , (3.22a)

ãε,1(xε) = 0 , ãε,1 ∼ β2/3k as x→ l− . (3.22b)

We observe that (3.22) reduces to equation (5.51) of [26] when there is no police, i.e. when z = 0. Then, to400

determine Λε,1 we introduce the new variable H by ãε,1 ≡ Λε,1H, so that H satisfies401

Hxx −
Λε

f(aε)

(
1 + z

(
g(aε)a

2+q
ε

)
aε

)
H = aε − γ + z(aε − α)aq−1

ε , xε < x < l , (3.23)

where H(xε) = 0 and H is bounded as x → l− in the sense that Hl ≡ limx→l− H(x) ̸= 0. Here aε(x) is the402

solution to (3.1) when D = Dcrit,ε. In terms of the solution to (3.23) and the constant Hl, we identify that403

Λε,1 =
β2/3k

Hl
. (3.24)

Finally, with the expression for β in (3.10), we obtain from (3.6), together with setting x = l in (3.15), that404

the curve A(l) versus D near the onset of nucleation can be parameterized as405

D ∼ Dcrit,ε − ε4/3D2
crit,εβ

2/3 k

Hl
, A(l) ∼ a0c + ε2/3a0cβ

1/3U(0) , (3.25)

where a0c = 3α/2. The parameterization of this curve is in terms of the parameter k, as defined in the normal406

form (3.14). By solving (3.14) numerically in the left panel of Figure 9 we plot U(0) in (3.25) in terms of k.407

Figure 9: Left: Plot of the bifurcation diagram of k versus U(0) as computed numerically from (3.14). Right:
The asymptotic result (dashed curve) for A(l) versus D very close to the fold point, as obtained from (3.25) with
Hl = 0.0583, is compared with the corresponding full numerical result (solid curve) computed using pde2path.
Parameters: l = 1, α = 1, γ = 2, ε = 0.01 and q = 3.

The final step for implementing the parameterization (3.25) is to numerically compute the constant Hl from408

(3.23). To do so, we must first formulate an appropriate asymptotic boundary condition for H as x→ l−. This409
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is done by differentiating ãε,1 = f(aε)aε,1, while using (3.3) together with the local behavior for aε,1 in (3.20).410

Upon Taylor expanding, and recalling that f(a0c) = 0, we obtain for x→ l− that411

dãε,1
dx

= f ′(aε)
daε
dx

aε,1 + f(aε)
daε,1
dx

∼

(
a0ckβ

1/6

2

)[
f ′(aε)

√
βa0c +

f(aε)

(l − x)2

]
,

∼

(
a0ckβ

1/6

2

)[(
f ′(a0c) + a0c

√
βf ′′(a0c)

) √
βa0c

(l − x)
−

√
βa0c

(l − x)
f ′(a0c)

]
∼ −

(
a0ckβ

1/6

2

)
a20cβf

′′(a0c) .

As a result, since f ′′(a0c) = 8a−3
0c , we conclude that412

daε,1
dx

∼ −4β7/6k , as x→ l− . (3.26)

Finally, we use ãε,1 = Λε,1H, together with (3.24), to obtain the required asymptotic boundary condition413

H ′(x) ∼ −4
√
βH(x) , as x→ l− , (3.27)

where we identify that Hl = H(l). Here β is given in (3.10).414

To determine Hl, we use a shooting method on (3.23) that is based on iterating on the initial condition415

H0 ≡ Hx(xε) and then imposing (3.27) at x = l − δ, where 0 < δ ≪ 1. The function aε(x) is solved numerically416

from (2.21) using Matlab ODE113. Numerical results for Hl at a few values of ε are given in Table 1.417

ε 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

Hl 0.0538 0.0521 0.0506 0.0492 0.0480 0.0469 0.0459 0.0449

ε 0.026 0.028 0.03 0.032 0.034 0.036 0.038 0.04

Hl 0.0440 0.0432 0.0424 0.0417 0.0410 0.0404 0.0398 0.0392

Table 1: Calculation ofHl for different ε using a shooting method for the BVP (3.23) where the required condition
(3.27) is imposed at x = l − δ with δ ≪ 1. Parameters: l = 1, α = 1, γ = 2, q = 3 and δ = 0.004.

Since Hl > 0 from Table 1, we conclude from (3.25) that the minimum value of D, which corresponds to the418

refined prediction for the saddle-node bifurcation point, is below the leading order threshold Dcrit,ε calculated419

from (2.26). Observe that D attains its minimum value Dmin,ε when k = kmax ≈ 1.46638. Substituting Hl in420

Table 1 into (3.25), we get a much improved approximation of the saddle-node point for D at which hotspot421

nucleation is initiated. This is shown in Figure 8, where the yellow curve, corresponding to Dmin,ε obtained from422

(3.25), rather accurately predicts the saddle-node point computed from pde2path as ε is increased on the range423

0.01 < ε < 0.04. In the right panel of Figure 9 we show a decent comparison, in a zoomed plot, of the local424

approximation (3.25) of A(l) versus D with pde2path numerical results.425

4 Linear Stability Analysis of Steady State Hotspot Patterns426

In this section we study the linear stability of steady-state hotspot solutions.427

4.1 The NLEP for a single-hotspot solution428

We first consider a single-hotspot steady-state solution on |x| ≤ l and we derive a nonlocal eigenvalue problem429

(NLEP) that characterizes its stability properties.430

To formulate the NLEP we linearize around the steady state, denoted here by (Ae, Ve, ue), by introducing431

A = Ae + eλtϕ , V = Ve + eλtψ , u = ue + eλtη , (4.1)
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where |ϕ|, |ψ|, |η| ≪ 1. Upon substituting (4.1) into (1.5) we obtain that432

λϕ = ε2ϕxx − ϕ+ 3VeA
2
eϕ+A3

eψ , (4.2a)

λ(2AeVeϕ+A2
eψ) = D

(
2AeVexϕ+A2

eψx

)
x
− (3A2

eVe + (2 + q)ueVeA
q+1
e )ϕ

− (A3
e + ueA

2+q
e )ψ − VeA

2+q
e η , (4.2b)

τλ
(
qAq−1

e ueϕ+Aq
eη
)
= D

(
qAq−1

e uexϕ+Aq
eηx
)
x
, (4.2c)

with ϕx = ψx = ηx = 0 at x = ±l. For K = 1, we recall from (2.2) and (2.41) that ue is a constant, given by433

ue =
U0∫ l

−lA
q dx

∼ U0

(
V

q/2
0

ε
∫∞
−∞(wq − wq

∞) dy + 2lwq
∞

)
, as ε→ 0 . (4.3)

To derive the NLEP we proceeds as follows. In the inner region we introduce the inner variable y = x/ε,434

where the inner solutions for Ae and Ve are Ae ∼ w(y)/
√
V0 and Ve ∼ V0. Then, to leading order, (4.2b) and435

(4.2c) yields ψyy = 0 and ηyy = 0, which have the bounded solutions η ∼ η(0) ≡ η0 and ψ ∼ ψ(0) ≡ ψ0, where436

ψ0 and η0 are to be determined. Moreover, from (4.2a), we get that Φ(y) = ϕ(εy) satisfies437

Φ′′ − Φ+ 3w2Φ+
w3

V
3/2
0

ψ0 = λΦ , −∞ < y <∞ ; Φ → 0 as |y| → ∞ . (4.4)

The goal of the calculation below is to determine ψ0, which will yield the NLEP from (4.4).438

To do so, we first integrate (4.2c) over |x| ≤ l and, by imposing ηx(±l) = uex(±l) = 0, we obtain that439

que

∫ l

−l
Aq−1

e ϕdx = −
∫ l

−l
Aq

eη dx . (4.5)

Since Ae = w/
√
V0 in the inner region where w = O(1) and V0 ≪ 1 while Ae = a(x) = O(1) in the outer region,440

the main contribution for the integrals come from the inner region and we approximate the integrals in (4.5) only441

over the hotspot region. Moreover, since
∫∞
−∞wpdy does not converge due to the fact that limy→∞w = w∞ ̸= 0,442

we must replace these integrals by the finite integral
∫∞
−∞ (wp − wp

∞) dy. In this way, to evaluate the integral on443

the right hand side of (4.5), we first subtract and then add w∞ to get444 ∫ δ

−δ
wpdx =

∫ δ

−δ
(wp − wp

∞ + wp
∞) dx = ε

∫ ∞

−∞
(wp − wp

∞) dy + 2δwp
∞ ∼ ε

∫ ∞

−∞
(wp − wp

∞) dy,

where δwp
∞ is ignored as w∞ ∼ α

√
V0 = O(ε) ≪ 1. As a result, (4.5) becomes445

que

V
(q−1)

2
0

∫ ∞

−∞
wq−1Φ dy ∼ − η0

V
q/2
0

∫ ∞

−∞
(wq − wq

∞) dy . (4.6)

Upon defining the integrals Jp and Ip by446

Jp ≡
∫ ∞

−∞
(wp − wp

∞) dy , Ip ≡
∫ ∞

−∞
wpΦ dy , (4.7)

we obtain from (4.6) that447

η0 ∼ −qUeV
1/2
0

Iq−1

Jq
. (4.8)

Here for convenience Jp is re-defined as twice the integral used in the steady-state theory of §2 and Appendix B.448
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Next, we integrate the ψ-equation (4.2b) over x ∈ (−l, l) where we impose ψx(±l) = 0. By using only the449

inner solutions to estimate the integrals, we obtain to leading order that450

3I2 +
ψ0

V
3/2
0

J3 +
(2 + q)

V
(q−1)/2
0

ueIq+1 +
η0

V
q/2
0

Jq+2 +
ψ0

V
1+q/2
0

ueJ2+q = −λ0
(
2V

1/2
0 I1 +

ψ0

V0
J2

)
. (4.9)

Upon using (4.8) for η0 and (4.3) for ue, we obtain that (4.9) simplifies to451

ψ0

V
3
2
0

(
J3 + ε−1

√
V0U0

J2+q

Jq
+ λV

1/2
0 J2

)
= −3I2 − (2 + q)ε−1

√
V0U0

Iq+1

Jq
− 2λV

1/2
0 I1 −

η0

V
q/2
0

Jq+2 . (4.10)

By dividing this expression by J3, we obtain that452

ψ0

V
3
2
0

(1 +Kq + λB) = −
(
3I2
J3

+ (2 + q)Kq
Iq+1

Jq+2
+ 2λB

I1
J2

− qKq
Iq−1

Jq

)
, (4.11)

where we have defined B and Kq by453

B ≡ V
1/2
0

J2
J3
, Kq ≡

V
1/2
0 U0

εJ3

J2+q

Jq
. (4.12)

Finally, by substituting (4.11) into (4.4) and recalling the definitions of Ip and Jp in (4.7), we obtain454

L0Φ− w3

(
a(λ)

∫
w2Φ+ b(λ)

∫
w1+qΦ+ c(λ)

∫
wq−1 + d(λ)

∫
wΦ

)
= λΦ , (4.13)

where L0Φ ≡ Φ′′ −Φ+ 3w2Φ and the integrals are defined over −∞ < y <∞. The λ-dependent multipliers are455

a ≡ 3

J3(1 +Kq + λB)
, b ≡ Kq(2 + q)

J2+q(1 +Kq + λB)
, c ≡= − qKq

Jq(1 +Kq + λB)
, d ≡ 2λB

J2(1 +Kq + λB)
.

For q = 2 and q = 3 the NLEP (4.13) has three distinct nonlocal terms. Moreover, since V0 = O(ε2), we can456

treat Kq in (4.12) as an O(1) parameter whose magnitude is proportional to the policing level U0.457

4.2 Numerical computations458

Since the NLEP (4.13) is too complicated to analyze rigorously, we will determine the spectrum of the NLEP by459

using a finite difference approach. This leads to a nonlinear matrix eigenvalue problem in λ, where we seek to460

determine the eigenvalue with the largest real part using an iterative approach.461

Since we are interested only in even solutions, we consider (4.13) on (0,∞). Since w(y) decays exponentially462

to w∞, we truncate the positive half-line to the large interval y ∈ (0, L), where we chose L = 20. We discretize463

Φ(yj) ∼ Φj , where yj = j∆y, for j = 0, . . . , N − 1 and ∆y = L/N − 1, with N = 300. We use standard finite464

differences to approximate Φ′′, while the midpoint rule is used to approximate the nonlocal integrals in (4.13).465

In this quadrature, the explicit form for the homoclinic w, as given in (2.7) of §2, was used. Recall that the466

integrals J2, J3, and J4 can be calculated as in Appendix B.467

With this discretization of the NLEP, we obtain the matrix eigenvalue problem M(λ)Φ = λΦ, where Φ ≡468

(Φ1, ...,ΦN )T . As the entries in M depend on λ, we used an iterative approach for determining λ. Starting with469

some initial guess λ0, we solve the standard matrix eigenvalue problem M(λ0)Φ = λ1Φ for the eigenvalue λ1470

with the largest real part. Further iterates are computed from the recursion M(λi)Φ = λi+1Φ. Numerically, we471

found that this iterative approach converged rather rapidly to a real-valued eigenvalue for both q = 2 and q = 3.472

By varying the parameter Kq, our numerical approximation of the principal eigenvalue of (4.13) is plotted473

for q = 2 and q = 3 in Figure 10. The results shown in Figure 10 suggest that (4.13) has no unstable eigenvalues474

for any Kq ≥ 0. As a result, we conclude that a single hotspot steady-state solution is linearly stable.475
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Figure 10: Numerical approximation of the principal eigenvalue of (4.13) for q = 2 and q = 3, with Kq ∈ (0, 10).
The parameter values are α = 1, γ = 2, ε = 0.02 and D = 5. From (2.42) we obtain V0 = 0.0078 for q = 2 and
V0 = 0.0137 for q = 3. We observe that λ is real, with λ < 0 for both q = 2 and q = 3.

4.3 Complex spatio-temporal dynamics of hotspot patterns476

In this section, we compute the competition instability threshold Dc of the diffusivity D that triggers the collapse477

of a hotspot in a specific hotspot pattern. This occurs when an eigenvalue crosses above zero for the spectral478

problem (4.2) as the diffusivity D is increased. Threshold values for an oscillatory instability in the amplitudes479

of the hotspots are also computed numerically as τ is varied. These results for instability thresholds are then480

displayed in a phase diagram in the τ versus D parameter space. We remark that the vertical τ axis in this481

phase diagram determines the police diffusivity Dp via Dp = D/τ . For a specific multi-hotspot pattern we will482

show that complex spatio-temporal hotspot dynamics can occur in a certain region of this parameter space.483

Owing to the fact that the outer approximations for ψ and η in (4.2) satisfy spatially heterogeneous BVPs, it484

is rather intractable analytically to derive an NLEP for studying the linear stability of multi-hotspot equilibria.485

As such, we must proceed with a direct numerical approximation of the eigenvalue problem (4.2).486

To approximate the discrete eigenvalues of (4.2), we first compute the steady-state Ae, Ve, ue and their deriva-487

tives. To do so, for the full system (1.1) we use the finite difference method and discretize Ae(xj) ∼ Aej ,488

ρe(xj) ∼ ρej , and Ue(xj) ∼ Uej , where xj = j∆x for j = 1, ..., N and ∆x = 2L/(N − 1). In this way, we489

obtain N -dimensional steady-state vectors Ae ≡ (Ae1, . . . , AeN )T , Ve ≡
(
ρ1/A

2
e1, . . . , ρN/A

2
eN

)T
and ue ≡490 (

Ue1/A
q
e1, . . . , UeN/A

q
eN

)T
, as well as their derivatives Vex and uex as approximated using central differences.491

Next, we discretize (4.2) using finite differences. We discretize ϕ(xj) ∼ ϕj , ψ(xj) ∼ ψj , and η(xj) ∼ ηj , where492

xj = j∆x for j = 1, ..., N and ∆x = 2L/(N − 1). In this way, we obtain the matrix eigenvalue problem493

λξ = A−1(M + F )ξ , (4.14)

where ξ ≡ (ϕ ;ψ ; η)T is a 3N dimensional vector with ϕ ≡ (ϕ1, . . . , ϕN )T , ψ ≡ (ψ1, . . . , ψN )T , and η ≡494
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(η1, . . . , ηN )T . The three block matrices A, M , and F in (4.14) are defined symbolically by495

A ≡

 IN 0IN 0IN
2Diag(AeVe) Diag(A2

e) 0IN
τqDiag(Aq−1

e ue) 0IN τDiag(Aq
e)

 , M ≡

 ε2Lap 0IN 0IN
M21 M22 0IN
M31 0IN M33

 ,

F ≡

 Diag(3A2
eVe − 1) Diag(A3

e) 0IN
Diag(−3A2

eVe − (2 + q)A1+q
e ueVe) Diag(−A3

e − ueA
q+2
e ) Diag(−veA2+q

e )
0IN 0IN 0IN

 ,

where IN is the N ×N identity matrix with the blocks of M defined by496

M21 ≡ Diag(2DAexVex + 2DAeVexx) +Diag(2DAeVex)Der ,

M22 ≡ Diag(DA2
e)Lap+Diag(2DAeAex)Der ,

M31 ≡ Diag(q(q − 1)Aq−2
e Aexuex + qAq−1

e uexx) +Diag(qDAq−1
e uex)Der ,

M33 ≡ Diag(DAq
e)Lap+Diag(qAq−1

e Aex)Der .

Here Diag(v) is defined as a square diagonal matrix with the elements of vector v on the main diagonal, while497

Lap and Der denote Laplacian and derivative operators.498

Figure 11: The two-boundary hotspot steady-state (left panel) and the linear stability phase diagram (right
panel) for L = 0.5 with α = 1, γ = 2, q = 3, ε = 0.03 and U0 = 1. Left: steady-state for D = 1.7. Right:
Linear stability phase diagram in the τ versus D plane computed from (4.14). The dot-dashed vertical line is the
competition instability threshold Dc, which corresponds to a zero eigenvalue crossing, while the hyperbola-shaped
curve is the Hopf bifurcation threshold. The solid vertical line is the hotspot nucleation critical value Dcrit for a
one-boundary hotspot steady-state. A two-boundary hotspot steady-state solution is unstable in the unshaded
regions C, D and is linearly stable in the shaded region B. As τ is increased above a threshold in the region A, the
two-boundary hotspot pattern exhibits nucleation-annihilation dynamics owing to the repeated effects of a near
oscillatory collapse of a boundary hotspot that is prevented by a nucleation event occurring near the boundary.
These two competing processes lead to large-scale and persistent hotspot amplitude oscillations.

For simplicity, and to eliminate the effect of slow hotspot dynamics, our numerical linear stability computa-499

tions are restricted to a two-boundary hotspot steady-state solution, such as shown in the left panel of Figure 11.500
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As discussed below in §4.4, the results for this specific pattern will still apply to some other multi-hotspot steady-501

state patterns. To calculate zero-eigenvalue stability thresholds for this pattern, we use a bisection method to502

compute the critical value of D at which the real part of the principal eigenvalue of (4.14) crosses through zero.503

Hopf bifurcation thresholds are also computed for this pattern in a similar way. In the right panel of Figure 11,504

we plot the corresponding linear stability phase diagram for the two-boundary hotspot steady-states in the τ505

versus D parameter plane. In Figure 12, the path of the eigenvalues crossing from stable to unstable regions in506

the linear stability phase diagram are given at a few cross-sections of the phase diagram.507

In the linear stability phase diagram of Figure 11, the dot-dashed vertical line is the competition instability508

threshold Dc at which the principal eigenvalue λ of the discrete approximation (4.14) crosses through zero. For509

D > Dc (region D of Figure 11), the two-boundary hotspot steady-state is unstable owing to a positive real510

eigenvalue of (4.14) (see the middle row of Figure 12). This initial instability, termed a competition instability,511

has the effect of triggering a nonlinear event that monotonically annihilates one of the two boundary hotspots.512

In the unshaded region C of Figure 11, where D < Dc and τ exceeds a threshold, the two-boundary hotspot513

steady-state is unstable as a result of a pair of complex conjugate eigenvalues that have entered into the right514

half-plane (see the top and bottom rows of Figure 12). If the emerging periodic solution branch is unstable,515

this instability is found numerically to trigger a nonlinear event leading to the oscillatory collapse of one of the516

two boundary hotspots, with the final pattern consisting of only one remaining boundary hotspot. This single-517

boundary hotspot is linearly stable and persists for all subsequent time. In Figure 13 we show the dynamics518

from full PDE simulations of (1.5) at the black marked points of Figure 11, which confirm the predictions from519

the linear stability phase diagram.520

The solid vertical line in the right panel in Figure 11 is the hotspot nucleation threshold Dcrit,ε, given in521

(2.26), for a single-boundary hotspot pattern. For D < Dcrit,ε, there is no steady-state one-boundary hotspot522

solution and we predict that a nucleation event will occur that has the effect of creating a new boundary hotspot523

at the other endpoint of the domain. The dashed curve in the shaded region corresponds to the Hopf bifurcation524

threshold and it separates the shaded region in Figure 11 into two parts. In region B, corresponding to a525

sufficiently large police diffusivity, the principal eigenvalues of the linearization are complex conjugates that lie526

in the stable left-half plane. As such, an initial perturbation of the two-boundary hotspot steady-state solution527

will have asynchronous oscillations in the hotspot amplitudes that decay in time. In region A the two-boundary528

hotspot steady-state is unstable since the linearization has an unstable complex conjugate pair of eigenvalues.529

To determine the linear stability of the time-periodic solution branch that emerges from this Hopf bifurcation530

across the boundary between regions A and B we use pde2path (cf. [29], [28]) on the PDE system (1.5) starting531

from the point τH = 25.94 and D = 1 in the linear stability phase diagram of Figure 11. As we continue in τ , we532

observe from the left panel of Figure 14 that the periodic solution branch that emerges from the Hopf bifurcation533

is initially linearly stable. This indicates that the Hopf bifurcation is super-critical. The right panel in Figure 14534

shows how the Floquet multipliers change along this periodic solution branch. To detect any secondary instability535

we computed 30 multipliers with the largest modulus as τ was varied, and a secondary instability was numerically536

identified with pde2path when at least one multiplier exceeded the tolerance 1 + fltol. In pde2path, the default537

value is fltol = 10−6 (see [28] for details on the algorithm in pde2path for calculating Floquet multipliers). The538

Floquet multiplier results in the right panel of Figure 11 show that the periodic solution branch loses stability at539

τ = 27.16. Further numerical experiments (not shown) indicate that qualitatively similar results for the periodic540

solution branch occur on other vertical slices across regions A and B.541

To verify this predicted behavior, in Figure 15 we show full PDE simulations of (1.5) at the three points542

marked in red in Figure 14 and the phase diagram of Figure 11. For τ = 10 (see the left panel of Figure 15),543

the two-boundary hotspot steady-state is linearly stable to oscillations that decay as time increases. When τ544

slightly exceeds the Hopf bifurcation point, as seen in the middle panel of Figure 15, small persistent oscillations545

in the amplitudes of the two-boundary hotspots are observed. This is a signature of a linearly stable periodic546

solution that has emerged from a super-critical Hopf bifurcation. In contrast, for τ = 40, which exceeds the547

threshold of the secondary instability along the periodic solution branch, in the right panel of Figure 15 we548
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Figure 12: Plot of the numerically computed eigenvalues of (4.14) (right) along three cross-sections that cross
from stable to unstable regions (left). Top row: As τ increases from 10 to 50 with D = 1, a pair of complex
eigenvalues cross the imaginary axis at point B and indicates a Hopf bifurcation; Middle row: As D increases
from 1 to 2.5 with fixed τ = 5, a pair of complex eigenvalues transition to two real eigenvalues at point B. One
of these eigenvalues crosses the origin on the real axis at point C and triggers an instability; Bottom row: As D
increases from 1 to 2.5 with fixed τ = 25, a pair of complex eigenvalues first cross the imaginary axis and enter
the right-half plane at the Hopf bifurcation at point B. These eigenvalues merge onto the real axis at point C.
As D increases further, one of these eigenvalues crosses the origin along the real axis, with the other eigenvalue
remaining in the unstable right-half plane.
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observe large-scale persistent asynchronous oscillations of the hotspot amplitudes. As distinct from the solution549

behavior in region C, for this value of τ = 40 in region A, the resulting large-scale asynchronous oscillations in the550

hotspot amplitudes do not lead to an annihilation event in which only one hotspot remains. Instead, whenever551

a boundary hotspot has nearly been annihilated, a new hotspot will be nucleated at this boundary as there is552

no one-boundary hotspot steady-state solution. The overall effect of this nucleation-annihilation behavior is to553

provide large-scale persistent asynchronous oscillations in the hotspot amplitudes, where crime hotspots oscillate554

out of phase. Since regions A and C occur when τ is above a threshold, and when the criminal diffusivity D is555

below a threshold, we conclude that large-scale oscillations in the hotspot amplitudes will occur whenever the556

police diffusivity Dp = D/τ is too small.557

Figure 13: The hotspot amplitudes A(±L) for a two-boundary hotspot pattern with D and τ as indicated at
the black marked points in Figure 11. The left panel, for the point in region B of Figure 11, shows damped
asynchronous oscillations in the hotspot amplitudes leading to a two-boundary hotspot steady-state. The middle
panel, for the point in region C of Figure 11, shows an asynchronous oscillatory instability in the hotspot
amplitudes that leads to the annihilation of one of the two boundary hotspots and a final one-boundary hotspot
steady-state. The right panel, for the point in Region D of Figure 11, shows a competition instability that
triggers hotspot annihilation. Parameters: α = 1, γ = 2, q = 3, ε = 0.03, L = 0.5 and U0 = 1.

4.4 Extension to some multi-spot steady-states558

We now discuss how translation symmetry can be used to show that the phase diagram in the right panel of559

Figure 11 for the simple two-boundary hotspot pattern still provides some information as to where nucleation-560

annihilation dynamics can occur for some multi-hotspot patterns. This is illustrated in the left and right panels561

of Figure 16, where half and one-third of the pattern, respectively, replicates the two-boundary hotspot pattern562

in Figure 11. Here we note that one must increase U0 to reflect the number of replications of the two-boundary563

hotspot pattern. For the multi-spot patterns in Figure 16, (3.25) still yields the nucleation threshold. Moreover,564

the numerical study of (4.14) determines both the competition instability threshold and the threshold for the565

initiation of the specific asynchronous mode of hotspot oscillations for which adjacent hotspots oscillate out of566

phase, which we refer to as the sign-alternating mode. For this particular type of asynchronous mode, the linear567

stability phase diagram in Figure 11 applies directly. We remark that for multi-hotspot patterns, there will likely568

be additional Hopf bifurcation thresholds for other possible modes of asynchronous oscillations other than the569

sign-alternating mode, which are not encapsulated in the phase diagram of Figure 11. For the D = O(ε−2)570

studied in [4], these additional Hopf thresholds were calculated for (1.1) for three and four-hotspot patterns.571

However, for our prediction of nucleation-annihilation dynamics for multi-hotspot patterns it suffices to572
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Figure 14: Left: The L2-norm of A versus τ for steady-state and periodic solution branches as computed by
pde2path for a vertical slice through the three red points in the phase diagram of Figure 11. A super-critical
Hopf bifurcation of the steady-state occurs at τH ≈ 25.94. Right: Modulus of the Floquet multipliers computed
by pde2path along the periodic orbit. The periodic solution branch loses stability at τ ≈ 27.16 as the Floquet
multiplier µ1 crosses the unit circle (i.e., |µ1| > 1). Parameters: α = 1, γ = 2, q = 3, ε = 0.03, L = 0.5 and
U0 = 1.

Figure 15: The hotspot amplitudes A(±L) for a two-boundary hotspot pattern with D = 1 and τ as indicated
at red marked points in Figure 11. Left: Damped asynchronous oscillations in the hotspot amplitudes lead to a
two-boundary hotspot steady-state. Middle: Small persistent oscillations in the amplitudes of the two-boundary
hotspots as τ slightly across the Hopf bifurcation point. Right: In Region A, and beyond the secondary bifurcation
point on the periodic solution branch, large-scale persistent oscillations in the amplitudes of the two-boundary
hotspots arise owing to the combined effect of an asynchronous oscillatory instability and hotspot nucleation
behavior. Parameters: α = 1, γ = 2, q = 3, ε = 0.03, L = 0.5 and U0 = 1.
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identify parameter values for which the sign-alternating mode has unstable hotspot oscillations and where hotspot573

nucleation will occur. In this way, region A of the phase diagram in Figure 11 can still be used to predict574

nucleation-annihilation dynamics for the specific patterns in Figure 16. As an illustration of this, in the movie in575

§1 accompanying Figure 4 (which corresponds to the right panel of Figure 16), nucleation-annihilation dynamics576

for (1.1) were found to occur at the indicated point in region A of the phase diagram in Figure 11.577

Figure 16: Two examples of steady-state multi-hotspot patterns with D = 1.7 where the linear stability phase
diagram shown in Figure 11 applies. Parameters: α = 1, γ = 2, q = 3, ε = 0.03. Here, U0 = 2 and L = 1 for the
left panel, with U0 = 3 and L = 1.5 for the right panel.

5 Discussion578

We have developed a hybrid asymptotic-numerical approach to study the existence and linear stability of steady-579

state hotspot patterns for the three-component RD model (1.1) of urban crime, which incorporates the effect of580

police deployment, in the new scaling regime where D = O(1). In this scaling regime, we have shown from a581

detailed study of a two-hotspot pattern that two opposing qualitative mechanisms can occur: one for hotspot582

nucleation and the other for hotspot annihilation. When these mechanisms are coincident in a parameter phase583

diagram we have predicted and verified from full PDE simulations that they lead to the occurrence of large-584

scale persistent spatio-temporal oscillations in the hotspot amplitudes for (1.1). Such complex spatio-temporal585

hotspot dynamics do not occur for the two-component crime model with no police intervention studied in [26],586

nor do they occur for the three-component model (1.1) in the scaling regime D = O(ε−2) ≫ 1 studied in [4].587

Moreover, we emphasize that they are intrinsic in certain parameter ranges for the deterministic system (1.1)588

when D = O(1) and are not due to any stochastic effects, such as those that are inherent in agent-based modeling589

[10]. As an interpretation of our findings, in the overlapping parameter regime where both hotspot annihilation590

and nucleation are coincident we suggest that the problem of predicting where and when hotspots will appear591

and then effectively disappear under the effect of a constant police deployment is rather intractable. Overall, our592

theoretical framework underlying the existence of nucleation-annihilation dynamics shares some similarities, but593

has a different mechanism, with the merging-emerging dynamics discovered in [16] and [9] for spike dynamics of594

a Keller-Segel chemotaxis model with logistic growth.595

More specifically, in our analysis of (1.1) for the regime D = O(1), we have shown that the branch of one-596

hotspot steady-state solutions has a saddle-node bifurcation point in D below which there is no one-hotspot597
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steady-state. By using translation symmetry, the saddle-node point is readily identified for K-hotspot steady-598

states. Near this critical threshold in D, a normal form analysis together with bifurcation software was used to599

indicate why new hotspots will be nucleated from a quiescent background at the spatial midpoint between adjacent600

hotspots when D decreases below a threshold. This threshold depends on the total police deployment U0 and the601

other parameters in (1.1), and we have provided a hybrid asymptotic-numerical approach to accurately predict602

this existence threshold even when ε is only moderately small. The asymptotic results have been confirmed with603

results from the bifurcation software pde2path [29, 18]. The accuracy of our prediction for this threshold relies604

heavily on the new exact solution in Lemma 1, which provides a highly accurate determination of the hotspot605

profile. This analysis extends, and improves, a related analysis in [26] for the two-component RD system with no606

police in the D = O(1) regime. One key mathematical challenge in extending the approach used in [26] for the607

two-component model to allow for police intervention was in developing an effective approach to deal with the608

spatially nonlocal reduced problem that arises from the three-component model. From the viewpoint of global609

bifurcation theory, the persistence of the saddle-node point even in the presence of police was the key feature610

responsible for hotspot nucleation events.611

With regard to the linear stability of hotspot patterns, we derived an NLEP for a one-hotspot steady-state.612

From numerical computations of the spectrum of this NLEP we have shown that a one-hotspot steady-state is613

always linearly stable. This linear stability result for one-hotspot steady-states is qualitatively similar to that614

found in [26] in the absence of police, as well as in [4] for (1.1) in the regime D = O(ε−2). However, since it is615

analytically intractable to provide a similar NLEP analysis for multi-hotspot patterns, owing to the fact that the616

steady-state solution is spatially non-uniform between adjacent hotspots, a full numerical approach was used to617

obtain a phase diagram in the τ versus D plane that encapsulates the linear stability results. For the specific,618

but yet highly illustrative, two-boundary hotspot pattern our numerically-computed phase diagram showed that619

distinctly different solution behavior will occur in different ranges of τ and D. For large values of D, the hotspot620

steady-state is unstable to an initial competition instability that triggers a monotonic hotspot annihilation event,621

without any amplitude oscillations. In an intermediate range of D, and when the police diffusivity Dp = D/τ622

is too small, an asynchronous oscillatory instability in the hotspot amplitudes will occur owing to a secondary623

instability that arises on the periodic solution branch that emerges from a Hopf bifurcation. Our numerical624

evidence suggests that this asynchronous oscillatory instability will lead to the non-monotonic collapse of one625

of the two boundary hotspots. Moreover, for smaller values of D, we have shown that in the τ versus D phase626

diagram where the two-boundary hotspot steady-state is unstable to an asynchronous oscillatory instability in627

the hotspot amplitudes, but where a one-boundary hotspot solution does not exist, large-scale persistent spatio-628

temporal oscillations in the hotspot amplitudes will occur. In Figure 4 of §1 we showed that the phase diagram629

in the right panel of Figure 11 for the two-boundary hotspot pattern can also be used to predict a parameter set630

where nucleation-annihilation dynamics occur for some other multi-hotspot patterns (see also Figure 16).631

Qualitatively extrapolating our linear stability and nucleation-threshold results to more complex spatial632

patterns than our simple two-boundary hotspot pattern, we conjecture that nucleation-annihilation dynamics,633

leading to large amplitude oscillations of hotspot amplitudes, will occur whenever τ and D are chosen so that an634

initial K-hotspot steady-state is unstable to an asynchronous oscillatory instability in the hotspot amplitudes,635

but where a steady-state pattern with fewer hotspots does not exist for that value of D. This should occur when636

the criminal diffusivity is below both the competition threshold and a saddle-node point, but for a sufficiently637

sluggish police deployment where the police diffusivity Dp = D/τ is also below a threshold. In such a parameter638

regime, whenever a hotspot is near collapse we predict that a new hotspot is effectively nucleated that prevents639

its annihilation. We conjecture that these competing processes lead to large-scale irregular oscillations in the640

hotspot amplitudes, whereby hotspots undergo repeated near-annihilation and nucleation events. Overall, such641

highly intricate dynamics for (1.1) provide a clear challenge for predicting when and where hotspots of crime642

will appear. In Figure 17 (see the movie in the Appendix) we show a full PDE simulation of (1.1) illustrating643

nucleation-annihilation dynamics for an initial pattern of two interior hotspots. From this figure, we observe that644

boundary hotspots are intermittently nucleated on the domain boundaries, while the interior hotspots undergo645
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repeated near oscillatory collapse and nucleation events. These irregular oscillations persist in time.646

Figure 17: Nucleation-annihilation dynamics for an initial pattern with two interior hotspots. The left and
middle panels are color plots of A and ρ, respectively, as time increases. The right panel is the amplitude of
A versus time for the two interior hotspots centered at x = 1.5 and x = 3. Parameters: α = 1, γ = 2, q = 3,
ε = 0.05, U0 = 2, L = 3, D = 2.8 and τ = 30. (see Appendix C for the movie).

There are a few specific problems that warrant further investigation. Although our analysis of nucleation647

behavior still applies to multi-hotspot steady-state solutions, and the asymptotic results can be implemented648

for various ranges of parameters, the linear stability results and the phase diagram typically only apply to two-649

hotspot steady-states and the phase diagram must be recomputed as parameters are varied. As a result, it is650

rather challenging to identify the full range in the α, γ, τ , D, q, and U0 parameter space where an initial two-651

hotspot steady-state pattern is expected to undergo complex spatio-temporal dynamics owing to the combined652

effect of hotspot nucleation and annihilation. In our proposed mechanism it is essential to numerically establish653

the existence of a secondary instability along the periodic solution branch that emerges from a Hopf bifurcation654

of the hotspot steady-state. In this context, it would be clearly worthwhile to numerically determine further655

phase diagrams in parameter space where complex spatio-temporal hotspot dynamics can occur.656

An additional open direction would be to develop a weakly nonlinear analysis to derive a reduced model657

that fully characterizes nucleation-annihilation dynamics for (1.1). Such normal form reduced systems have been658

derived previously for certain three-component RD Fitzhugh-Nagumo type systems to theoretically model some659

highly intricate global dynamics of weakly interacting pulses that occur near co-dimension two bifurcation points660

(see [15] and the references therein). However, to date, there have been only a few weakly nonlinear theories661

developed for analyzing localized solutions for two-component RD systems in the semi-strong pulse interaction662

limit, in which only one species is localized ([30], [7], [11]). For semi-strong pulse interactions in the 1-D Gierer-663

Meinhardt model, a weakly nonlinear analysis has been used to show that spike amplitude oscillations arising664

from a Hopf bifurcation are subcritical ([30], [7]) and that competition instabilities leading to pulse annihilation665

are also subcritical [11]. For the highly nonlinear three-component system (1.1) with semi-strong interactions, it666

would be very challenging to develop weakly nonlinear theories near bifurcation thresholds.667

Finally, it would be interesting to develop a similar hybrid approach to determine whether nucleation-668

annihilation dynamics are possible in a 2-D spatial domain. Two key challenges in a 2-D setting are that669

there is no explicit formula for the hotspot profile analogous to that in Lemma 1 and that the problem for670

approximating the hotspot nucleation threshold cannot be reduced to a quadrature as in the 1-D case.671
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A Appendix A: The Homoclinic Profile672

In this appendix we derive the explicit result in (2.7) of Lemma 1 for the profile of the homoclinic solution to673

(2.6), which satisfies wyy − (w − w∞) + (w3 − w3
∞) = 0. The first integral of this ODE yields674

(wy)
2 = −2F(w) , where F(w) ≡

∫ w

w∞

(
(s− w∞)− (s3 − w3

∞)
)
ds . (A.1)

By integrating F(w) and factoring the resulting expression, we obtain for y < 0, where wy > 0, that675

√
2wy = (w − w∞)(wm − w)

1
2 (w − wms)

1
2 . (A.2)

We choose y = 0 to be where w(y) has a maximum, and we label w(0) = wm where wm is obtained from setting676

F(wm) = 0 in (A.1). In (A.2) we have677

wm ≡ −w∞ +
√
2− 2w2

∞ , wms ≡ −w∞ −
√

2− 2w2
∞ , wm + wms = −2w∞ , wmwms = 3w2

∞ − 2 . (A.3)

Here w∞ is the smallest positive root of w3 − w + b = 0, which satisfies 0 < w∞ < 1/
√
3 for any b in 0 ≤ b <678

2/(3
√
3). As a result we have wms < w∞ < wm.679

By separating variables in (A.2) we can write680 ∫
dw

(w − w∞)
√

−(w + w∞)2 + (2− 2w2
∞)

=

∫
1√
2
dy . (A.4)

We then introduce a new variable s defined by the positive root of681

s2 = −(w + w∞)2 + (2− 2w2
∞) so that w + w∞ =

√
2− 2w2

∞ − s2 , (A.5)

on the range w∞ ≤ w ≤ wm. On this range of w, we observe that s is monotone decreasing, and that s =682 √
2− 6w2

∞ when w = w∞ and s = 0 when w = wm. In terms of s, the left hand side of (A.4) can be written as683

LHS =

∫
ds(√

2− 2w2
∞ − s2

)(
2w∞ −

√
2− 2w2

∞ − s2
) =

1

2w∞
(I1 + I2) , (A.6)

where I1 ≡
∫

1√
2−2w2

∞−s2
ds and I2 ≡

∫
1

2w∞−
√

2−2w2
∞−s2

ds.684

The integral I1 is readily calculated as685

I1 = sin−1

(
s√

2− 2w2
∞

)
. (A.7)

To calculate I2, we multiply by the conjugate of the integrand to rewrite I2 as686

I2 = −
∫ √

2− 2w2
∞ − s2 + 2w∞

2− s2 − 6w2
∞

ds = I21 + I22 ; I21 ≡
∫

2w∞
s2 + 6w2

∞ − 2
ds , I22 ≡

∫ √
2− 2w2

∞ − s2

s2 + 6w2
∞ − 2

ds .

(A.8)
By decomposing I21 into partial fractions, we calculate687

I21 = − 2w∞√
2− 6w2

∞
tanh−1

(
s√

2− 6w2
∞

)
. (A.9)
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To evaluate I22, we use the following anti-derivative valid for A > 0 and B > 0:688 ∫ √
A− x2

x2 −B2
dx = −

√
A−B2

B
tanh−1

(
x
√
A−B2

B
√
A− x2

)
− sin−1

(
x√
A

)
.

Identifying A = 2− 2w2
∞, B =

√
2− 6w2

∞, and
√
A−B2 = 2w∞ we determine I22 as689

I22 = − 2w∞√
2− 6w2

∞
tanh−1

(
s√

2− 6w2
∞

2w∞√
2− 2w2

∞ − s2

)
− sin−1

(
s√

2− 2w2
∞

)
. (A.10)

Next, we substitute (A.9) and (A.10) into (A.8) to determine I2. Upon using this expression for I2, together690

with (A.7) for I1, we obtain from (A.6) and (A.4) that691

tanh−1

(
s√

2− 6w2
∞

2w∞√
2− 2w2

∞ − s2

)
+ tanh−1

(
s√

2− 6w2
∞

)
= −y

√
1− 3w2

∞ . (A.11)

At the maximum value w = wm of the homoclinic, for which s = 0, (A.11) yields y = 0 as required. Then, by692

using the identity 2tanh−1(x) = − ln (1− x)/(1 + x) for |x| < 1, together with (A.5), we can exponentiate (A.11)693

to obtain on the range 0 ≤ s ≤
√

2− 6w2
∞, for which w∞ ≤ w ≤ wm, that694 (√

2− 6w2
∞(w + w∞)− 2w∞s√

2− 6w2
∞(w + w∞) + 2w∞s

)(√
2− 6w2

∞ − s√
2− 6w2

∞ + s

)
= e2κy , where κ ≡

√
1− 3w2

∞ . (A.12)

Finally, we must eliminate s between (A.12) and (A.5) so as to determine w = w(y). To do so, it is convenient695

to define η in 0 ≤ η ≤ 1 by s = η
√

2− 6w2
∞. From (A.12) and (A.5) we obtain the two equations696 (

β − η

β + η

)(
1− η

1 + η

)
= e2κy , η2(2− 6w2

∞) = −4w2
∞β

2 + 2(1− w2
∞) , (A.13)

where we have defined β ≡ (w + w∞)/(2w∞). The first equation in (A.13) can be written as the quadratic697

η2 + β = − η(β + 1)

tanh(κy)
. (A.14)

Upon solving the second equation in (A.13) for η2, we substitute into (A.14) to determine η as698

− η(β + 1)

tanh(κy)
=

2(1 + β)− 2w2
∞(2β2 + 3β + 1)

2− 6w2
∞

=
(1 + β)

2− 6w2
∞

(
2− 2w2

∞(2β + 1)
)
.

After cancelling the common factor (β + 1), we obtain η = − tanh(κy)
(
2− 2w2

∞ − 4w2
∞β
)
/
(
2− 6w2

∞
)
, which699

we use in the second equation of (A.13) to eliminate η. Upon recalling that β ≡ (w + w∞)/(2w∞), we get700

tanh2(κy)
(
2− 2w2

∞ − 2w∞(w + w∞)
)2

= (2− 6w2
∞)
(
−(w + w∞)2 + 2− 2w2

∞
)
.

By using tanh2(z) = 1− sech2(z), we obtain after some algebra that701

sech2(κy)
(
2− 2w2

∞ − 2w∞(w + w∞)
)2

=
(
2− 2w2

∞ − 2w∞(w + w∞)
)2

+ (2− 6w2
∞)
(
(w + w∞)2 − 2 + 2w2

∞
)
, (A.15a)

= (2− 2w2
∞) ((w + w∞)− 2w∞)2 . (A.15b)
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Finally, we define c(y) by702

c(y) =

√
2

1− w2
∞

sech(κy) , where κ ≡
√

1− 3w2
∞ ,

and we take the positive square root of (A.15b) to get703

c
(
2− 2w2

∞ − 2w∞(w + w∞)
)
= 2 ((w + w∞)− 2w∞) .

By solving for w + w∞, we obtain the following result, which is equivalent to that given in (2.7) of Lemma 1:704

w + w∞ =
c(1− w2

∞) + 2w∞
1 + cw∞

,

B Appendix B: Calculation of the Integrals Jp705

In this section, we compute the integrals Jp ≡
∫∞
0 (wp − wp

∞) dy, without having to use the explicit profile for706

w = w(y). In our steady-state construction, leading to (2.42), we need to compute J2, J3, J4, and J5. Since (2.6)707

yields wyy − (w−w∞)+ (w3−w3
∞) = 0 we identify by integrating over 0 < y <∞ that J1 = J3. Moreover, since708

y > 0, we obtain that wy = − [−2F(w)]1/2, where F(w) was given in (A.1).709

B.1 Calculation of J1 = J3710

We first write J1 as711

J1 ≡
∫ ∞

0
(w − w∞) dy =

∫ w∞

wm

(w − w∞)
dy

dw
dw = −

∫ w∞

wm

(w − w∞)√
−2F(w)

dw = −
√
2

∫ w∞

wm

dw√
(wm − w)(w − wms)

.

By introducing the new variable s by wm − w = s2, and using (A.3) to calculate wm − wms, we get712

J1 = J3 = 2
√
2

∫ √
wm−w∞

0

ds√
wm − wms − s2

= 2
√
2 arcsin

( √
wm − w∞

23/4(1− w2
∞)1/4

)
. (B.1)

B.2 Calculation of J2713

To evaluate J2, we proceed in a similar way to obtain714

J2 ≡
∫ ∞

0

(
w2 − w2

∞
)
dy = −

∫ w∞

wm

(w2 − w2
∞)√

−2F(w)
dw = −

√
2

∫ w∞

wm

(w + w∞)√
(wm − w)(w − wms)

dw .

Then, we introduce s by wm − w = s2 to obtain715

J2 = 2
√
2

∫ √
wm−w∞

0

wm − wms − s2√
wm − wms − s2

ds+ 2
√
2

∫ √
wm−w∞

0

wms + w∞√
wm − wms − s2

ds .

This yields that716

J2 = 2
√
2 (wms + w∞) sin−1

(√
wm − w∞√
wm − wms

)
+ 2

√
2

∫ √
wm−w∞

0

√
wm − wms − s2 ds . (B.2)
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To evaluate the integral in (B.2), we use717 ∫ A

0

√
B2 − x2 dx =

B2

2
sin−1

(
A

B

)
+
A
√
B2 −A2

2
,

with A =
√
wm − w∞ and B =

√
wm − wms. Then, (B.2) becomes718

J2 =
√
2 (wms + wm + 2w∞) sin−1

(√
wm − w∞√
wm − wms

)
+
√
2
√

−w2
∞ + w∞(wm + wms)− wmwms .

Finally, we use (A.3) to notice that wms +wm + 2w∞ = 0 and to evaluate wmwms. This yields the simple result719

J2 =

∫ ∞

0

(
w2 − w2

∞
)
dy =

√
2
√

2− 6w2
∞ . (B.3)

B.3 Calculation of J4 and J5720

The integral J4 is calculated in a similar way as721

J4 ≡
∫ ∞

0
(w4 − w4

∞) dy = −
∫ w∞

wm

(w4 − w4
∞)√

−2F (w)
dw = −

√
2

∫ w∞

wm

(w4 − w4
∞)/(w − w∞)√

(wm − w)(w − wms)
dw

= −
√
2

∫ w∞

wm

(w2 + w2
∞)(w + w∞)√

(wm − w)(w − wms)
dw . (B.4)

Then, using the substitution wm − w = s2, the integral J4 becomes722

J4 = 2
√
2

∫ √
wm−w∞

0

(wm + w∞ − s2)
(
(wm − s2)2 + w2

∞
)

√
wm − wms − s2

ds . (B.5)

Similarly, we can rewrite J5 ≡
∫∞
0 (w5 − w5

∞) dy, and by introducing the new variable wm − w = s2 we obtain723

J5 = 2
√
2

∫ √
wm−w∞

0

(wm − s2)4 + w∞(wm − s2)3 + w2
∞(wm − s2)2 + w3

∞(wm − s2) + w4
∞√

wm − wms − s2
ds . (B.6)

The two integrals J4 and J5 are nonsingular and can be readily calculated numerically.724
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C Appendix C: Illustration by Movies725

C.1 Figure 2 (Left): Hotspot Nucleation.726

727

C.2 Figure 2 (Right): Hotspot Annihilation from a Competition Instability.728

729
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C.3 Figure 3: Asynchronous Amplitude Oscillations and an Oscillatory Collapse.730

731

C.4 Figure 17: Complex Nucleation-Annihilation Dynamics.732
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