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Abstract
We investigate an SIRS epidemic model with spatial diffusion and nonlinear incidence
rates. We show that for small diffusion rate of the infected class DI , the infected
population tends to be highly localized at certain points inside the domain, forming K
spikes. We then study three distinct destabilization mechanisms, as well as a transition
from localized spikes to plateau solutions. Two of the instabilities are due to coarsening
(spike death) and self-replication (spike birth), and havewell-knownanalogues in other
reaction–diffusion systems such as the Schnakenberg model. The third transition is
when a single spike becomes unstable and moves to the boundary. This happens
when the diffusion of the recovered class, DR becomes sufficiently small. In all cases,
the stability thresholds are computed asymptotically and are verified by numerical
experiments. We also show that the spike solution can transit into an plateau-type
solution when the diffusion rates of recovered and susceptible class are sufficiently
small. Implications for disease spread and control through quarantine are discussed.

Mathematics Subject Classification 35B36 · 35Q92 · 92D25

1 Introduction

The SIRS epidemic model introduced by Kermack andMcKendrick in 1927 Kermack
and McKendrick (1927) is widely used to model the spread of infectious diseases.
The population is divided into three disjoint classes: susceptible (S), infected (I),
and recovered (R), where susceptibles can be infected by those already infected and
subsequently recover, and recovered class are immune to the disease but lose immunity
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over time. These assumptions are modelled using the following system of ODEs:

⎧
⎨

⎩

St = −βSI + γ R,

It = βSI − ν I ,
Rt = ν I − γ R,

(1)

where β is the infection rate, ν is the recovery rate, and γ is the rate of immunity
loss. Kermack and McKendrick’s work has motivated the use of mathematics in the
study of epidemiology (Feng and Velasco-Hernández 1997; Hethcote 2000; van den
Driessche and Watmough 2000).

While spatially-homogeneous dynamics are by now well studied, modelling spa-
tial interactions is still an active area of research. Most disease outbreaks have a
strong spatial characteristic, and many studies emphasize the importance of the spa-
tial dimension for modelling these outbreaks. For example, Zulu et al. (2014) looked at
spatio-temporal patterns in HIV outbreaks in Malawi over two decades (1994–2010).
The authors found that the disease initially spread in several localized hot-spots and
they identified several geographically differentiated HIV/AIDS epidemics rather than
a single one. These initial outbreaks were followed by a complex spatio-temporal
dynamics. Similar spatial clusters of HIV outbreaks were found in a recent study
(Jeefoo 2012) in Phayao Province, Thailand, and in South Africa (Tanser et al. 2009).

In recent decades, numerous methodologies have been used to describe spatial
distribution of disease. This include the use of cellular automata (Doran and Laffan
2005; Fuks and Lawniczak 2001), metapopulations (Arino and Van den Driessche
2003; Arino et al. 2007; Lloyd and Jansen 2004), networks (Kuperman and Abramson
2001; Yuan and Chen 2008) and partial differential equations (Murray 2001; Sun
2012). Generally speaking, incorporating spatial structure leads to very rich dynamics
in epidemic models, such as formation of disease hot-spots.

In this paper we study spatially-localized outbreaks for the SIRSmodel with spatial
dispersion. As will be shown below, such outbreaks can occur when the infection rate
β is nonlinear. For simplicity, we will assume that β is proportional to I , although
other types of nonlinearity, such as Holling functional response also lead to hot-spot
formation. We model spatial dispersion using diffusion. This results in the following
system, ⎧

⎨

⎩

St = DSSxx − χ SI 2 + γ R,

It = DI Ixx + χ SI 2 − ν I ,
Rt = DRRxx + ν I − γ R.

(2)

Here DS, DI , DR are diffusion coefficients of each class of population, χ I is the rate
of infection. We study the epidemic system on 1-D interval [−L, L] with Neumann
boundary conditions, so that Sx = Ix = Rx = 0 at x = ±L. For simplicity, we also
assume the timescale of infection and recovery is much shorter than the average life
span, so birth and death rates for each class are neglected.

The second key assumptionwemake is that the infected class I diffusesmore slowly
than others. There are two scenarios where this is biologically plausible. The first
scenario, common inmany species is that the disease itself reduces the speciesmobility.
A second scenario, applicable to humans, is an intentional quarantine policy to limit the
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spread of infection. Such a policy is well known to be effective in controlling disease
outbreaks and is often used a first-line defense against quickly-spreading infections.

We therefore write DI = ε2 where ε is small. By further rescaling,1 we may set
χ = 1, ν = 1. This leads to the following singularly perturbed reaction diffusion
system: ⎧

⎨

⎩

St = DSSxx − SI 2 + γ R,

It = ε2 Ixx + SI 2 − I ,
Rt = DRRxx + I − γ R.

(3)

Under these assumptions, this system has localized disease concentrations cor-
responding to spike-type solutions. Such spike patterns have been studied in great
detail since 1990’s in simpler reaction–diffusion systems consisting of two compo-
nents, such as Gierer–Meinhardt system, Gray–Scott model, Schnakenberg model
and Keller–Segel model and its variants. We refer reader to Doelman et al. (2001),
Kang et al. (2007), Kolokolnikov et al. (2005a), Kolokolnikov and Wei (2018), Iron
et al. (2001), Iron and Ward (2002), Maini et al. (2012), Muratov and Osipov (2000,
2002), Painter and Hillen (2011), Sherratt and Lord (2007), Wei (1999) and Wei and
Winter (2013) and references therein. The introduction of a third component leads to
interesting new phenomena not present in two-component reaction–diffusion systems
(Buttenschoen et al. 2019).

Let us summarize the main results in this paper. Simulations and analysis show that
the behavior of the system is highly dependent on diffusion rate DR, relative to the
diffusion rate of infected class, ε2.We isolate twodistinct regimes: either DR � O(ε2)

or DR ≤ O(ε2).

The regime DR � O(ε2) is studied in Sects. 2, 3 and 5. In this regime, the
steady-state population consists of K hot-spots of disease, uniformly distributed inside
the interval [−L, L]. Depending on system parameters, the K -spike steady state can
undergo two types of instabilities. The first type, analyzed in Sect. 5.1 is referred to as
spike competition instability. As a result of such an instability, some of the hot-spots
are “absorbed” by others, resulting in fewer hot-spots. The second type of instability,
studied in Sect. 5.2 is referred to as self-replication instability, whereby a spike splits
into two, resulting in more spikes. These instabilities are illustrated in Fig. 1. Figure 1a
shows 8 spikes that gradually coarsen into 2 as DS is gradually increased. On the
other hand, with one-spike equilibrium as initial condition, replication occurs and
more spikes appear as we gradually decrease DS . This is shown in Fig. 1b. We derive
explicit thresholds for DS such that the spike competition occurs when DS > Dcom

SK ,

K ≥ 2; and self-replication instability occurs when DS < Drep
SK , K ≥ 1. Formulas

for Dcom
SK and Drep

SK are given in Sect. 5.
The second regimewe study iswhen DR is small: DR ≤ O(ε2). In this case, a single

spike can become unstable, and depending on other parameters, two phenomena can
occur. If DR is sufficiently small, a single spike moves to the boundary (depending
on how big DS is), as illustrated in Fig. 2. This phenomenon is studied in Sect. 4.
On the other hand, when both DR and DS are small, the spike “fattens up” and

1 Let t = t̂
ν , S =

√
ν
χ Ŝ, I =

√
ν
χ Î , R =

√
ν
χ R̂ and define new parameters by γ = νγ̂ , DS = ν D̂S , DI =

νε2, DR = ν D̂R . Upon dropping the hats, this yields (3).
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1392 C. Gai et al.

Fig. 1 Instabilities of steady state spike solutions induced by slowly increasing DS or decreasing DS . Here
DR = 1, L = 2.5, ε = 0.05, N = 15 and γ = 1. Left: coarsening (competition) instability when DS
is increased (DS = 1 + 10−5t). Colour plot of I is shown. Right: self-replication instability when DS is
slowly decreased (DS = 6 − 10−5t)

Fig. 2 Stable and unstable motion of a single spike. Here, DR is as indicated while other parameters are
fixed at DS = 5, L = 1, ε = 0.06, N = 5 and γ = 1. In (a), one-spike equilibrium moves to the center,
which shows that the center spike is stable. In (b) the spike moves to boundary instead of moving to center,
so that a single spike is unstable

becomes a mesa-type pattern, i.e. a contiguous region of high concentration of disease
connected via a sharp interface to a region of low concentration. Numerically we
observe two types of inhomogeneous equilibrium depending on the value of DS and
an example of such a steady state pattern is shown in Fig. 3. Spike-type solution exists
for sufficiently large DS , but transition to interface-type patterns for small DS . This
process is illustrated in Fig. 3 (left). Interface patterns are studied in Sect. 6.

2 Single-spike solution

We start by constructing a single interior spike solution to (3). Such a solution cor-
responds to a localized concentration of the infected population I at some point x0

123



Localized outbreaks in an S-I-R model with diffusion 1393

Fig. 3 Transition from spike to mesa when DR = 0, ε = 0.04, N = 10, L = 1, γ = 1 with DS as a
control parameter. Left: DS is gradually decreased from 0.5 to 0.05. Middle, Right: Profile of I (x) for DS
as indicated

in the interior of the domain, x0 ∈ (−L, L). The extent of the spike is of O(ε). We
therefore introduce the inner variable

y = x − x0
ε

. (4)

In the inner region, equilibrium solution of (3) then satisfies the system

⎧
⎪⎪⎨

⎪⎪⎩

Syy − ε2

DS
SI 2 + ε2

DS
γ R = 0,

Iyy + SI 2 − I = 0,

Ryy + ε2

DR
I − ε2

DR
γ R = 0.

(5)

We then expand S, I , R in ε as follows:

S = S0 + εS1 + O(ε2),

I = I0 + ε I1 + O(ε2),

R = R0 + εR1 + O(ε2). (6)

Upon substituting (6) into (5) and collecting higher-order terms in ε, we obtain, to
leading order, ⎧

⎨

⎩

S0yy = 0,
I0yy + S0 I 20 − I0 = 0,
R0yy = 0.

(7)

This shows that S0 and R0 are constants to be determined. We then rescale

I0 = 1

S0
w(y), (8)

where so that w satisfies the well-known ground-state

w′′ − w + w2 = 0, w → 0 as y → ±∞
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whose explicit solution is given by

w(y) = 3

2
sech2

( y

2

)
.

To determine R0 and S0, we must match the inner and the outer region. In the outer

region we approximate I ∼
(∫ L

−L Idx
)

δ(x − x0) and SI 2 ∼
(∫ L

−L SI 2dx
)

δ(x −
x0). We further estimate

(∫ L
−L Idx

)
∼ 1

S0
ε
∫ ∞
−∞ wdy ∼ 6ε/S0 and similarly,

∫ L
−L SI 2dx ∼ 6ε/S0, so that

0 = DSSxx + γ R − 6ε/S0δ(x − x0),
0 = DRRxx − γ R + 6ε/S0δ(x − x0).

(9)

To solve (9), we introduce the Green’s function G(x; x0), which satisfies

Gxx − μ2G = −δ(x; x0), Gx (±L) = 0, where μ =
√

γ

DR
. (10)

A simple calculation gives

G(x; x0) = 1

μ sinh(2μL)

{
cosh (μ(x + L)) cosh (μ(x0 − L)) , −L < x < x0
cosh (μ(x0 + L)) cosh (μ(x − L)) , x0 < x < L.

(11)
The solution to (9) is then given by

R(x) = 6ε

S0DR
G(x; x0) (12)

and

S(x) = DR

DS
(R0 − R(x)) + S0, (13)

where R(x) = 6ε
S0DR

G(x; x0), R0 = R(0) and S0 is to be determined.
To find S0, we use the conservation of mass. Let N be the total population, so that

N ≡
∫ L

−L
S + I + Rdx . (14)

Note that by adding three equations in (3) and integrating over the domain, N is
independent of time. We will also take

N = 2N0L, (15)

where N0 is an arbitrary constant depending on initial conditions, so that N scales
with domain size; N0 can be thought of an average density.
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We now substitute (8), (12) and (13) into the mass conservation condition (14, 15)
to obtain that

S20 − N0S0 + E = 0, (16)

where

E = 3ε

L

⎛

⎝1 + 1

γ
− DR

γ DS
+ 2

√
DR

γ

L

DS

cosh
(√

γ
DR

(x0 + L)
)
cosh

(√
γ
DR

(x0 − L)
)

sinh
(
2
√

γ
DR

L
)

⎞

⎠ .

(17a)
Solving (16) we get two roots when N 2

0 − 4E > 0; the system has no solution when
N 2
0 − 4E < 0. Asymptotically in ε, they are

S0− ∼ E

N0
, (17b)

which is of O(ε) and
S0+ ∼ N0, (17c)

which is of O(1). Plots of these two roots are shown in Fig. 4. The two roots connect
at a fold point corresponding to a double root of (16).

We now summarize our first result:

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
N

0

0.5

1

1.5

2

2.5

3

3.5

S
0

S
0-

S0
*

S
0+

Fig. 4 Plot of two roots to (16) versus total population N . Here ε = 0.05, L = 1, DR = 1, DS = 1 and
γ = 1. The dashed curve denotes S0+ and the solid curve denotes S0−. S∗

0 is the fold point where (16) has
double root
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Result 2.1 In the limit ε → 0, with DR and DS independent of ε, the SIRS system (3)
has the following single-spike steady state:

S(x) ∼ − 6ε

S0DS
G(x; x0) + 6ε

S0DS
G(x0; x0) + S0,

I (x) ∼ 1

S0
w

(
x − x0

ε

)

,

R(x) ∼ 6ε

S0DR
G(x; x0),

(18)

where G(x; x0) is given by (11), w(y) = 3
2 sech

2(
y
2 ) and S0 is a constant determined

by the total population mass as given in (17), assuming that the solution of (16) exists.

3 Nonlocal eigenvalue problem

We now study the stability of one-spike solution. We first linearize around the steady
state by taking

S(x, t) = S(x) + eλtϕ(x),

I (x, t) = I (x) + eλtψ(x),

R(x, t) = R(x) + eλtξ(x).

Assuming |ϕ| , |ψ | , |ξ | � O(1) we obtain the linearized problem

⎧
⎪⎨

⎪⎩

λϕ = DSϕxx − I 20 ϕ − 2S0 I0ψ + γ ξ,

λψ = ε2ψxx + I 20 ϕ + (2S0 I0 − 1) ψ,

λξ = DRξxx + ψ − γ ξ.

(19)

with Neumann boundary conditions at x = ±L.

In the inner region, we let y = x−x0
ε

where x0 is the spike position. To leading
order, we then obtain ϕyy ∼ 0 so that ϕ(y) ∼ ϕ0 is constant to be determined. The
equation for ψ is

λψ = ψyy − ψ + 2w(y)ψ + I 20 ϕ0. (20)

In the outer region, we approximate

{
DSϕxx − λϕ + γ ξ = c1δ(x; x0)
DRξxx − (γ + λ)ξ = c2δ(x; x0) (21)

where

c1 = ϕ0

∫

I 20 dx + 2S0

∫

I0ψdx, c2 = −
∫

ψdx . (22)

We write
ξ(x; x0) = − c2

DR
G (x; x0) , (23)
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where G(x; x0, μ) is the Green’s function that satisfies (10), but with μ =
√

γ+λ
DR

. To
solve for ϕ, we make a change of variables. Let

ϕ = DRγ

λ(DR − DS) − γ DS
ξ + ϕh . (24)

Then ϕh satisfies:

DSϕhxx − λϕh =
(

c1 − γ c2
λ(DR − DS) − γ DS

)

δ(x; x0)

so that

ϕh = − 1

DS

(

c1 − γ c2
λ(DR − DS) − γ DS

)

G (x; x0) .

Therefore we estimate

ϕ0 = ϕ(x0) ∼ −c2
γ

λ(DR − DS) − γ DS
G

(

x0; x0,
√

γ + λ

DR

)

− 1

DS

(

c1 − γ c2
λ(DR − DS) − γ DS

)

G (x0; x0)

and

c1 = ε

(
ϕ0

S20

∫

w2dy + 2
∫

wψdy

)

; c2 = −ε

∫

ψdy. (25)

After some algebra, this leads to the following non-local eigenvalue problem (NLEP),

(L0 − λ)ψ = w2 2
∫ ∞
−∞ w2dy − (λ + 1)

S20
εP

∫ ∞

−∞
wψdy, (26)

where L0ψ = ψyy − ψ + 2wψ (27)

and where

P =
γ

√
DR

λ+γ

λ(DR − DS) − γ DS

cosh
(√

λ+γ
DR

(x0 + L)
)
cosh

(√
λ+γ
DR

(x0 − L)
)

sinh
(
2
√

λ+γ
DR

L
)

− λ + 1 + DSγ
λ(DR−DS)−γ DS√
λDS

cosh
(√

γ
DS

(x0 + L)
)
cosh

(√
γ
DS

(x0 − L)
)

sinh
(
2
√

γ
DS

L
) .

(28)
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For the special case when x0 = 0, this expression simplifies to

P(λ) =
γ

√
DR

λ+γ

λ(DR − DS) − γ DS

coth
(√

λ+γ
DR

L
)

2

− λ + 1 + DSγ
λ(DR−DS)−γ DS√
λDS

coth
(√

γ
DS

L
)

2
. (29)

In general, the NLEP problem (26) is difficult to tackle since P has such a com-
plicated dependence on λ. However there are two cases for which stability of (26) is

well established: namely, large or small
S20
ε

. Note that S0 is given by (17) and has two

branches, S0+ and S0−, refer to Fig. 4. Consider the case of large N . Then
S20+
ε

� 1

whereas
S20−
ε

� 1. In the former case, (26) reduces to a local eigenvalue problem
(L0 − λ)ψ ∼ 0. This problem is well known to admit a positive eigenvalue λ = 5/4
corresponding to ψ = √

w (Lamb Jr 1980) so that this branch is unstable. For the
latter case (S0 = S0−), the problem (26) reduces to the following well-known NLEP
problem:

λψ = L0ψ − 2w2

∫ ∞
−∞ wψdy
∫ ∞
−∞ w2dy

, S0 ∼ O(ε). (30)

This is well-known to be stable as was first proven in Wei (1999).
Finally, a lengthy but a straightforward algebraic computation shows that at the fold

point where S0+ = S0−, there is a zero eigenvaluewhose corresponding eigenfunction
is given by ψ = w. This suggests that the entire branch S0+ is unstable whereas the
entire branch S0− is stable, although the proof of this fact is not in the cards due to the
complex structure of P(λ). This structure is analogous to the well-known properties
of the Grey–Scott model in the low-feed regime (Kolokolnikov et al. 2005b).

4 Spikemotion

We now study the motion of the interior spike, which is determined by small eigen-
values. We rewrite the system as following:

⎧
⎨

⎩

St = DSSxx − SI 2 + γ R,

It = ε2 Ixx + SI 2 − I ,
Rt = DRRxx + I − γ R

(31)

with Neumann boundary conditions and DS, DR � O(ε2). To study themotion of the
spike, we expand around the center x0 by writing x = x0 + εy, and let x0 = x0(ε2t),

S(y, t) = S
(
x−x0(ε2t)

ε

)
, I (y, t) = I

(
x−x0(ε2t)

ε

)
, and R(y, t) = R

(
x−x0(ε2t)

ε

)
.

Then system (31) becomes
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⎧
⎨

⎩

−ε3x ′
0Sy = DSSyy − ε2SI 2 + ε2γ R,

−εx ′
0 Iy = Iyy + SI 2 − I ,

−ε3x ′
0Ry = DRRyy + ε2 I − ε2γ R.

(32)

Applying the same expansion (6) and collecting O(ε) terms we obtain

− x ′
0 I0y = I1yy + S1 I

2
0 + 2S0 I0 I1 − I1, (33)

where I0 and S0 are given by (13), (17b). We then multiply (33) by I0y and integrate
to obtain the solvability condition

x ′
0

∫ ∞

−∞
I 20ydy = 1

3

∫ ∞

−∞
I 30 S1ydy. (34)

To determine S1y , we match to the outer region. We expand

S(x; x0) = S(x0 + εy; x0) ∼ S(x0) + εyS′(x±
0 ) as y → ±∞, (35)

where S(x; x0) in outer region is expressed in (13). Thus we obtain S1y (±∞) =
S′(x±

0 ). Taking the average we obtain

S1y = − 6ε

S0DS

(
Gx (x

+
0 ; x0) + Gx (x

−
0 ; x0)

2

)

(36)

where G(x; x0) is given in (11). Substituting (36) into (34) gives the equation that
describes the motion of the interior spike:

x ′
0 = − 6ε

DSS20

sinh
(
2
√

γ
DR

x0
)

sinh
(
2
√

γ
DR

L
) , (37)

where S0 is expressed in (17b). Write

S0 = ε Ŝ, (38)

then we have

dx0
dt

= − 6ε

DS Ŝ2

sinh
(
2
√

γ
DR

x0
)

sinh
(
2
√

γ
DR

L
) . (39)

Equation (39) has a zero equilibrium x0 = 0. Its stability is determined by linearizing
around x0 = 0.The corresponding eigenvalue is computed by differentiating the right-

hand side of (39) with respect to x0 and evaluating it at zero: λ = ∂x0

(
dx0
dt

)

x0=0
. This

yields
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λ = − 12ε

DS Ŝ2

√
γ
DR

sinh
(
2
√

γ
DR

L
) < 0. (40)

Therefore the equilibrium centered at x0 = 0 is stable with respect to spike motion.

4.1 Boundary effects and spikemotion

From formula (40), it is clear that the eigenvalue is stable, provided that DR is not
too small. However numerical experiments show that the spike becomes unstable and
moves to the boundary when DR is sufficiently small (while other parameters are
fixed). To understand this, note that for small DR, (17b) simplifies to

S0 ∼
6ε

(
1 + 1

γ

)

N
(41)

and Ŝ ∼ 6(1+ 1
γ

)

N . Therefore (40) simplifies to

λ ∼ −2

3

εN 2

DS

(
1 + 1

γ

)2

√
γ

DR
exp

(

−2L

√
γ

DR

)

, DR � 1 (42)

so that the eigenvalue becomes exponentially small in DR . On the other hand, there
are also exponentially weak boundary effects due to the interaction of the pulse with
the boundary that we disregarded in the computation leading to (34). These boundary
terms appear when integrating by parts in (34). To compute them, we replace (34) by
a more precise expression

− x ′
0

∫

I 20ydy = (
I0y I1y − I0 I1

)∣
∣y=

L−x0
ε

y= −L−x0
ε

+
∫

I0y I
2
0 S1dy. (43)

The computation of the boundary terms is relatively standard and we summarize it
here. Note that

w(y) ∼ 6e−y as y → ∞ (44)

so that

I0 ∼ 6

S0
exp (−y) . (45)

For x near L, we change variables:

x = L + εz

so that y = L−x0
ε

+ z and

I0 ∼ 6

S0
exp

(

− L − x0
ε

)

exp(−z). (46)
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Near z = 0, equation for I1 satisfies I1zz−I1 ∼ 0, so that I1 = A exp z+B exp(−z).
Since I ′(L) = 0, we must therefore have

I1 ∼ 6ε

S0
exp

(

− L − x0
ε

)

exp(z), (47)

so that

(I0x I1x − I0 I1)|x=L = −72ε

S20
exp

(

−2
L − x0

ε

)

. (48)

Performing a similar computation at x = −L , and evaluating the remaining terms as
before, we obtain

x ′
0 ∼ − 6ε

DS

sinh
(
2
√

γ
DR

x0
)

sinh
(
2
√

γ
DR

L
)

1

Ŝ2
+ 60ε

{

exp

(

2
x0 − L

ε

)

− exp

(

2
−L − x0

ε

)}

(49)
so that

λ ∼ −12ε

DS

√
γ
DR

sinh
(
2
√

γ
DR

L
)

1

Ŝ2
+ 240 exp

(

−2L

ε

)

. (50)

This expression clearly shows that the boundary term can play a destabilizing effect
when the first term on the right hand side of (50) is exponentially small. This

happens precisely when DR is small. In this case, we estimate sinh
(
2
√

γ
DR

L
)

∼
1
2 exp

(
2
√

γ
DR

L
)
and (50) becomes

λ ∼ − 6ε

DS

√
γ

DR

1

Ŝ2
exp

(

−2

√
γ

DR
L

)

+ 240 exp

(

−2L

ε

)

.

Setting λ = 0, substituting Ŝ ∼ 6(1+ 1
γ

)

N and solving for DS yields the critical value

D∗
S ∼ εN 2

1440

√
γ

DR

1

(1 + 1
γ
)2

exp

(

2L

(
1

ε
−

√
γ

DR

))

(51)

with a single spike centered at center being unstable when DS > D∗
S, and stable

otherwise. This phenomenon is illustrated in Fig. 2. Take L = 1, γ = 1, N = 5, ε =
0.06 and DR = 0.0059. Then (51) yields D∗

S = 5.00. It follows that a single spike is
unstable at the origin when DR < 0.0059 and is stable otherwise. This is confirmed
in Fig. 2.

The boundary effect discussed here is similar to destabilization discussed
in Kolokolnikov and Ward (2004). However the difference here is that this effect
is primarily driven by having a small DR , and is very specific to having three compo-
nents, and has no analogue as far as we know in the two-component RD systems.
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In this section, in addition to DR being small, we had to assume that DR �
O(ε2) in order to perform asymptotic calculations. However the same destabilization
phenomenon is observed (numerically) even when DR = O

(
ε2

)
, although formula

(51) is no longer valid there. It is an interesting open problem to show this analytically.

5 Instability thresholds of multi-spike equilibrium

In this section we study K -spike patterns, where K ≥ 1. We analyze two types of
instabilities, one is referred to as spike competition or coarsening instability, whereby
some of the spikes are annihilated if the initial state contains too many spikes. The
other is referred to as self replication, whereby a new spike may appear by the process
of spike splitting. In this chapter we derive explicit thresholds for these instabilities.

5.1 Coarsening

When there are too many spikes, some of them get absorbed by others. This is known
as coarsening or competition instability, and it occurs for example for sufficiently
large value of DS, while DR is fixed independent of ε. To determine the instability
threshold for spike competition, we apply the method in Kolokolnikov et al. (2012),
Ward and Wei (2002) and compute the critical value at which an asymmetric spike
pattern bifurcates from symmetric branch. To do this, consider a single interior spike
on the domain [−l, l]. Duplicating the domain K times we obtain K spikes on the
domain of size 2L = 2lK . From (13) we have

S(x) = 1

DS

6ε

S0
(G(0, 0) − G(x; 0)) + S0, (52)

Replacing L by l in (11) and evaluating (52) at x = l we obtain

S(l) = S0 + 3ε

DSS0

√
DR

γ

⎛

⎝
1

tanh
(√

γ
DR

l
) − 1

sinh
(√

γ
DR

l
)

⎞

⎠ , (53)

where S0 = S0− is given in (17b) with x0 = 0. Plots of S(l)when DS = 1 and DS = 3
are shown in Fig. 5. The bifurcation point corresponds to the minimum point of the
curve l → S(l). Setting S′(l) = 0 then yields the critical stability threshold. Solving
for DS as a function of other parameters, and upon substituting l = L/K we obtain
the critical threshold

Dcom
SK ∼ N 2

0

( L
K

)3

3ε
(
1 + 1

γ

)2
sinh s + 1

cosh s + 1

1

s
, where s =

√
γ

DR

L

K
. (54)

The K -spike solution is unstable and some of the spikes will disappear when DS >

Dcom
SK . The plot of Dcom

SK as a function of DR is shown in Fig. 6. Note that Dcom
SK has

the following asymptotics as DR → ∞:
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Fig. 5 Plots of function S(l) versus l for DS = 1 and DS = 3. Other parameters are fixed and they are:
ε = 0.02, DR = 2, γ = 1, N0 = 4

Dcom
SK ∼ N 2

0

( L
K

)3

3ε
(
1 + 1

γ

)2 , as DR → ∞, (55)

which is shown in Fig. 6. We now summarize the following result:

Result 5.1 Consider a K -spike solution for the system (3) on an interval of length
2L with K > 1. Then in the limit of ε → 0, this solution is stable provided that
DS < Dcom

SK , where Dcom
SK is given by (54). When DS > Dcom

SK , the K -spike solution
becomes unstable due to competition (or coarsening) instability and some of the spikes
disappear.

5.2 Self-replication

Unlike coarsening instability, self-replication is related to disappearence of the single
spike equilibrium solution. This instability occurs for example for when DS is suffi-
ciently small while DR is fixed independent of ε. The mechanism has been studied in
detail for Gray–Scott model (Doelman et al. 1997; Kolokolnikov et al. 2005c;Muratov
and Osipov 2000, 2002; Reynolds et al. 1994, 1997), and it is similar here. We start
by changing variables

S(x) = ε√
DS

S̃(x), I (x) =
√
DS

ε
Ĩ (x), x = εy, (56)

so that the system (3) transforms to

⎧
⎪⎪⎨

⎪⎪⎩

√
DS
ε

S̃yy −
√
DS
ε

S̃ Ĩ 2 + γ R = 0,

Ĩyy + S̃ Ĩ 2 − Ĩ = 0,
DR
ε2

Ryy +
√
DS
ε

Ĩ − γ R = 0.

(57)
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Fig. 6 Plot of stability threshold Dcom
S2 versus DR for single spike solutions. Here ε = 0.02, L = 1, N0 =

2.5, and γ = 1. The curve denotes analysis value Dcom
S2 obtained by (54), and the dashed line is the

asymptote of the curve. The dots are obtained by numeric simulations, and they have a good agreement
with analysis

Next, assume that DS, DR are O(1). Then to leading order, in the inner region we
obtain the following problem, referred to as the core problem,

{
S̃yy − S̃ Ĩ 2 = 0,

Ĩyy + S̃ Ĩ 2 − Ĩ = 0,
(58a)

this core problem is identical to the core problem for both the Grey–Scott model
(Kolokolnikov et al. 2005c; Muratov and Osipov 2000, 2002; Reynolds et al. 1994),
and the Schnakenberg model (Kolokolnikov and Wei 2018). Assuming that the spike
is symmetric, we define

A := S̃y(∞) =
∫ ∞

0
S̃ Ĩ 2dy. (58b)

By plotting the numerical bifurcation diagram of (58b), it was found in Kolokolnikov
et al. (2005c) and Muratov and Osipov (2000) that the steady state disappears when
A > Ac ≈ 1.35, and this disappearence leads to self-replication. To determine A in
terms of the other parameters of the problem, we perform an asymptotic matching to
the outer region. We estimate

∫
SI 2 = ∫

I and

DRRxx − γ R = −
(∫

I dx

)

δ(x), DSSxx + γ R = −
(∫

I dx

)

δ(x).

The solution is then given by

R(x) =
(∫

I dx
)

DR
G(x, 0); S(x) = DR

DS
(R(0) − R(x)) , (59a)
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where G(x) is as given in (11). We substitute (59) into the total mass equation (14) to
obtain

N = 2N0l = 2A
√
DS

(

1 + 1

γ
− DR

γ DS

)

+ 2Al√
DS

√
DR
γ

tanh
(

γ
DR

l
) , (60)

so that self-replication occurs when

A = N0l
√
DS

DS

(
1 + 1

γ

)
+ l

√
DR
γ

tanh
(√

γ
DR

l
) − DR

γ

> Ac ≈ 1.35. (61)

Equivalently, we rewrite (61) to obtain the following quadratic equation with respect
to

√
DS,

(

1 + 1

γ

)

DS − N0l

Ac

√
DS +

√
DR
γ
l

tanh
(√

γ
DR

l
) − DR

γ
= 0. (62)

Self-replication of one-spike solution occurs when DS < Drep
S , where

√

Drep
S is the

large root of (62). For K spikes on domain [−L, L] with L = Kl, this leads to the
following result:

Result 5.2 Consider a K -spike solution of the system (3) on an interval of length
2L with K ≥ 1. Then in the limit of ε → 0, this solution is stable provided that
DS > Drep

SK , where DS = Drep
SK is the large root of (62), in which l = L

K and
Ac ≈ 1.35 corresponds to the fold point of the problem (58).

Figure 7 shows numerical validation of Result 5.2. The solid curve denotes the
asymptotic curve as given in Result 5.2. Above the curve, a single spike is stable. As
DS is decreased and crosses the curve, self-replication takes place resulting in two
spikes. The dots denote numeric simulations. Good agreement is observed between
numerics and asymptotics.

For a fixed DR and a given number of spikes K , we have derived both upper and
lower thresholds on the DS for which K spikes are stable. Note that multiple solutions
(e.g. two or three spikes) can be stable at the same time. This is illustrated in Fig. 8.

6 Mesa-like steady states whenDR = 0

As shown in Sect. 5.1, multi-spike configurations lose stability when DR is sufficiently
small: even a single spike eventually becomes unstable (due to an exponentially small
eigenvalue becoming positive) and moves towards the boundary when DR = O(ε2).

For even smaller values of DR, we observe numerically that the spike “fattens” as
shown in Fig. 9. In the limit of DR → 0, numerics indicate a phase separation of
infected population. This can be thought of as a “quarantine effect”: when mobility of
recovered population and susceptible population is reduced, the infected population
is confined to a certain region of the entire domain with a sharp interface inbetween.
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Fig. 7 Self-replication threshold (Result 5.2). Comparison between numerics and analysis. Solid curve is
the analytical result given by (62). Dots denote numerical simulations. Self-replication is observed as DS
is decreased past the solid curve in the figure. Here ε = 0.005, N = 5, L = 1, and γ = 1.
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Fig. 8 Bifurcation diagram of K -spike patterns for K = 2, 3. The region between solid curves is the stable
region for 2-spike patterns, and the region between dashed curves is the stable region for 3-spike patterns.
Above the regions spike competition instability occurs, below the region, self replication instability occurs.
Here ε = 0.03, N0 = 2.5, L = 1, γ = 1

Here we perform the analysis for the limiting case DR = 0 and DS being small. At
the steady state, we then have I = γ R so that the model (3) reduces to

{
0 = DSSxx − SI 2 + I ,
0 = ε2 Ixx + SI 2 − I .

(63)
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Fig. 9 Steady states of the system (3) with L = 1, DR = 0, ε = 0.04, γ = 1, N0 = 2.79 and with DS as
indicated. Solid curves correspond to the full numerical solution of (3). Dashed lines show the asymptotic
approximation (67)

Adding the two equations we obtain that DSS+ ε2 I is constant. We then eliminate
S from the second equation to obtain

DS Ixx = DS

ε2
I − C I 2 + I 3, (64)

where

C = I + DS

ε2
S (65)

is a constant to be determined.
Equation (64) admits a heteroclinic solution connecting the steady state I =

0 to a positive steady state I+ provided that the Maxwell-line condition holds:
∫ I+
I0

(
DS
ε2

I − C I 2 + I 3
)
d I = 0. This is equivalent to cubic having equidistant roots,

that is,
DS

ε2
I − C I 2 + I 3 = I

(

I − I+
2

)

(I − I+) (66)

so that

I+ =
√
2DS

ε2
, C = 3

2
I+. (67a)

In this case there is an interface solution on the domain [0, L] given by

γ R = I ∼ I+
(
1

2
tanh

(
I+
2
√
2

(l − |x |)√
DS

)

+ 1

2

)

; (67b)

S ∼ ε2

DS
I+

(

1 − 1

2
tanh

(
I+
2
√
2

(l − |x |)√
DS

))

. (67c)

Here, l is the location of the interface. A back-to-back interface solution such as
shown in Fig. 3 is obtained by extending this solution to [−L, L] using even reflection.
Finally, the interface location l is determined using the mass conservation condition,
N0L = ∫ L

0 (S + I + R)dx . In the limit ε → 0, this yields
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Fig. 10 Total mass of infected people versus DS . Here ε = 0.005, N = 5, DR = 1, L = 1, and γ = 1.
The solid curve denotes numeric results, and dashed curves is the asymptotic result corresponding to self-
replication thresholds of Result 5.2

LN0 = I+
{(

1 + 1

γ

)

l +
(
3

2
L − 1

2
l

) (
ε2

D

)}

so that solving for l we obtain

l =
N0 − I+ 3

2

(
ε2

D

)

I+
(
1 + 1

γ
−

(
ε2

D

)) L. (67d)

This result is valid as long as O(ε) � l < L. In this case, the interface has an
exponentially weak effect on the boundary, and the agreement with the numerics is
nearly perfect. Figure 9 illustrates this. Solution (67) is shown super-imposed on the
numerical solution; the difference is imperceptible in the “eye-ball norm” as long as
l = O(1). The asymptotics break down when l becomes small (Fig. 9, right), and the
interface transforms into a spike solution.

Note that the infected class subdivides the domain into outbreak portion (x < l) and
disease-free portion (x > l). The susceptible population is three times smaller within
the outbreak portion of the domain when compared with the disease-free portion.

For simplicity, we took DR = 0 here. Numerical simulations indicate that similar
interface solutions persist for sufficiently small DR , although it changes l as well as
the interface shape. We defer their study to future work.
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7 Discussion

In this paper we studied the consequence of adding spatial diffusion to the relatively-
standard SIRS model. Under certain reasonable assumptions, the resulting system (3)
has a very rich solution space, exhibiting hot-spots as well as interface-type solutions,
depending on whether DR is large or small, respectively.

The analysis of drift instability when DR is small in Sect. 4.1 was done for a single
spike only. It would be interesting to see if this can be extended to multiple spikes. In
the case of two spikes, this instability would presumably induce them to move towards
each other until they merge. However in this case, there are other potential instabilities
that are unique to multiple spikes (coarsening or competition instability), as discussed
in Sect. 5.1. It is unclear which of these instabilities would dominate. Similarly, can
self-replication occur for same parameter regimes as the drift instability of Sect. 4.1?
These are interesting open questions for future work.

Occurrence of disease clusters has been widely documented in epidemiology lit-
erature, see e.g. Jeefoo (2012), Kruse et al. (2009), Otwombe (2014), Tanser et al.
(2009) and Zulu et al. (2014). Our study underscores the importance of diffusion in
formation of hot-spots and disease spread. One of the key assumptions leading to
hot-spot formation was that the diffusion of infected class is relatively slow compared
to the susceptible class. While it is difficult to measure (or even quantify) diffusion
rates, one study (Tanser et al. 2009) did find a strong positive correlation between
HIV hot-spot location and proximity to a large road. A multitutde of other causes
have been proposed (see Otwombe 2014 and references therein). This includes the
level of male circumcision; religiosity (less HIV prevalence in muslim communities
in Africa); urbanization level with wider HIV prevalence in rural areas, among others;
preponderence of drug use (Kruse et al. 2009).

The hot-spot regime DR � DI is very similar to the previous analysis for
the two-component reaction–diffusion systems, such as the Schnakenberg model
(Kolokolnikov and Wei 2018; Ward and Wei 2002), and the behaviour is qualita-
tively similar to the SI model with diffusion introduced in Sun (2012) (which itself is a
generalization of the Schnakenberg model). However, from the analysis point of view,
the third component introduces a novel non-local eigenvalue problem (see Sect. 3).
On the other hand, the regime DR ≤ DI requires completely new analysis. On one
hand, the resolution of an exponentially small boundary layer in Sect. 4.1 is crucial
for computing stability thresholds of a single interior spike in this regime. On the
other, this regime also leads to mesa-type solutions of Sect. 6. The analysis there is
similar to interface solutions derived in Hale et al. (1999) and Hale et al. (2000) for
the Gray–Scott model. However it appears to be more robust: such interface solutions
exist for a wide range of parameters here, rather than a very narrow range studied
in Hale et al. (1999, 2000).

In Fig. 10 we plot the total mass of infected population versus DS . As DS is
decreased, the mobility of susceptible population is reduced and initially leads to a
decrease of overall disease load. However as DS is decreased further, eventually a self-
replication threshold is triggered. This results in an immediate increase of infection
hot-spots and an overall increase in infected population. This underscores a highly
nonlinear relationship between mobility and disease outbreaks.
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