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When faced with slowly depleting resources (such as decrease in precipitation due to climate

change), complex ecological systems are prone to sudden irreversible changes (such as deser-

tification) as the resource level dips below a tipping point of the system. A possible coping

mechanism is the formation of spatial patterns, which allows for concentration of sparse

resources and the survival of the species within “ecological niches”even below the tipping

point of the homogeneous vegetation state. However, if the change in resource availability is

too sudden, the system may not have time to transition to the patterned state and will pass

through the tipping point instead, leading to extinction. We argue that the deciding factors

are the speed of resource depletion and the amount of the background noise (seasonal climate

changes) in the system. We illustrate this phenomenon on a model of patterned vegetation.

Our analysis underscores the importance of, and the interplay between, the speed of climate

change, heterogeneity of the environment, and the amount of seasonal variability.

Key words: delayed bifurcations, stochastic PDE’s, Turing instability, climate change, patched

vegetation

1 Introduction

Climate change – both anthropogenic and natural – poses multiple pressures on earth

ecosystems. While the earth’s climate has undergone many drastic changes in its history,

the rate at which the current human-induced changes are occurring is unmatched in recent

history going back at least 60 million years [39]. Just in the last century, CO2 levels in the

atmosphere have increased by 50%, and are expected to double by 2050 [52]. This rate

of increase is more than 200 times the fastest historical rates of at least the last 800,000

years, as measured by ice cores [40]. Similarly, the acidification of oceans is taking place

at breakneck speed, likely unparalleled in earth’s known history [20, 46, 60].

Large swings in earth’s climate are not unprecedented, and life has been able to

adapt to such swings more or less successfully in the past. The question is whether a

species is resilient enough not just to the changes in environment, but to the speed with

which these changes occur [14, 19, 22, 51, 58]. It is widely accepted that anthropogenic

climate change is mainly responsible for increasingly fast swings in precipitation and

other weather parameters [8, 13, 38, 52, 59]. Many ecosystems can be very sensitive to
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sudden shifts in environmental conditions that can trigger critical transitions as a result

of crossing a tipping point, leading to drastic changes in population density and even

extinctions [7, 16, 32, 41, 44, 51, 56].

The speed of climate change is especially important for an ecosystem that is already

under stress, such as vegetation in arid and semi-arid environments, where a relatively

small change in precipitation can have a very large impact [50]. One of the mechanisms by

which the vegetation in such environments adapts is by growing in patches, leaving areas

of barren land interspersed with localized patches or stripes of vegetation where it can

conserve resources [5,24,25,42,48,49,51,63]. However, it takes time for plants to adjust to

reduced precipitation by forming patches. If the environmental changes occur too rapidly,

vegetation may be unable to form these niches and face extinction. This phenomenon

was recently illustrated numerically in [51], where it was noted in Section 4.2 that “at

high rates of change, desertification can take place at rainfall levels for which stable

patterned states still exist”. They used a modified version of vegetation pattern formation

system introduced by Klausmeier [25]. It is a reaction-advection–diffusion system that

couples plant density n(x, t) to soil water concentration w(x, t), and has the following

non-dimensional form:

∂n

∂t
= wn2 − n+ δ

∂2n

∂x2
, (1.1a)

b
∂w

∂t
= a− w − wn2 + c

∂w

∂x
+ d

∂2w

∂x2
. (1.1b)

Critically, for the existence of spatially heterogeneous states, the model includes spatial

terms corresponding to diffusion of water within soil (d∂2w/∂x2), downhill water flow(
c∂w/∂x

)
, as well as the spread of plants (δ∂2n/∂x2). The parameter a represents the

precipitation rate. Parameter b represents the differing timescales in changes in water

level (in days, say) versus those in plant density (in months). For illustration purposes,

we consider here the limit c = 0 (flat ground) in one dimension, corresponding to the

well-known Gray–Scott model [62]; the more general case exhibits the same behaviour.

To understand the effect of the speed of precipitation changes, we consider the case in

which precipitation is slowly decreased in time and fluctuates with small noise. That is,

we let

a = a0 − εt+ noise, (1.2)

with 0 < ε � 1. The initial precipitation a0 is assumed to be sufficiently large so that the

system has full vegetation cover (corresponding to the non-trivial spatially homogeneous

state) when a = a0. Here, ε is a small parameter corresponding to the rate at which

precipitation is decreased as a result of climate change or gradual drought onset. The

noise represents fluctuations in precipitation due to weather or seasonal variability. We

model it using

noise = σ0
dW

dt
, (1.3)
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Figure 1. Evolution of vegetation patterns in the presence of slow precipitation drift. The green

curve A avoids the tipping point by going into a reversible patterned state. The red curve B falls

off the fold point leading to irreversible extinction. Model (1.1) is used with a given by (1.5). The

Green curve A corresponds to slow decrease (ε = 0.006, corresponding to a change of 2 mm/year)

while the red curve B corresponds to a faster decrease (ε = 0.03, corresponding to a change of

40 mm/year). Other parameters are a0 = 2.85, a1 = 1.75, σ0 = 0.0001, δ = 0.05, d = 1, c = 0 on a

domain of size L = 22.839 with periodic boundary conditions. The full vegetation state (black curve

C) bifurcates into a patterned state (blue curve D, computed by the software package AUTO [12])

at a = ap = 2.4743, and has a fold point at ac = 2. For values of a below ap and above ac, the

full vegetation state still exists (dashed black curve C) but is unstable to spatial perturbations. The

vertical green dashed line E at a = ad = 2.18 is the asymptotic prediction for the delayed “take-off”

value of the green curve. Excellent agreement between the asymptotics and numerics is observed.

where dWt is spatio-temporal Weiner process, defined by (see e.g. [17, 43, 47])

dW =
√
dt

∞∑
m=−∞

ξm (t) exp (imx) ; (1.4)

here ξm(t) is a Gaussian random variable (with mean zero and variance one). Further-

more, we assume that dW is real, so that ξ−m = ξm. See Appendix A for numerical

implementation details. The noise drives a spatial instability and plays an essential role in

transitioning the system to a heterogeneous state, thus allowing the formation of localized

vegetation patches and increasing resilience to drought.

Alternatively, to model precipitation that varies periodically between a0 and a1 we

take

a = a0 + (a1 − a0) (1 − cos (εt)) /2 + noise. (1.5)

We illustrate our main point in Figure 1. We let precipitation vary periodically according

to (1.5), with green (A) and red (B) curves corresponding to two distinct values of ε as

given in the caption. The non-trivial spatially homogeneous steady state corresponding to
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full vegetation cover is shown by the black curve (C). It exhibits a tipping-point structure

at a = ac. Below the critical precipitation rate a = ac, the only spatially homogeneous

state is n = 0, corresponding to a “desert state”. On the other hand, the patterned

state – shown in blue (D) – bifurcates off the full vegetation state at a = ap (as a result

of a Turing bifurcation), and exists even for precipitation rates well below ac.

As a slowly drifts below ap, the homogeneous state becomes unstable to spatial per-

turbations. However, it takes time for these perturbations to grow, as illustrated in

Figure 1. If the drift speed ε is too large (for example, as a result of rapid onset of

drought), represented by the red curve (B), or equivalently, if the spatial noise σ0 is

sufficiently small, the perturbations may not have enough time to grow before the tipping

point ac is reached. If this happens, the tipping point will be activated before the system

can transition to the patterned state. In this case, the plant population crashes to zero,

resulting in rapid desertification (extinction). Moreover, as is usual with tipping points,

this process is not easily reversible, so the desert state persists even as precipitation later

increases back to the regime that supports full vegetation cover
(
a > ap

)
.

By contrast, if the drift speed ε is sufficiently small (for example, due to a naturally

occurring climate change), represented by the green curve (A), or equivalently, if the

spatial noise σ0 is sufficiently large, there is enough time for the spatial perturbations

to grow, and the system is able to transition to the patterned state. This state extends

beyond the tipping point ac, which means that the vegetation can persist in a patterned

state even as a is decreased below ac. Furthermore, unlike the scenario illustrated by the

red curve, the case illustrated by the green curve is entirely reversible: if in the future the

precipitation increases past ap, the patterned state gradually transitions back into the full

vegetation state.

We have modelled and analysed this phenomenon using a stochastic ODE that describes

the evolution of the system along each of the Fourier modes near the slowly-varying steady

state. The resulting equation is a variant of the Ornstein–Uhlenbeck process. For each

mode, the combined effect of the slow drift and noise determines the solution spread of

the associated Fokker–Planck equation, which describes the probability density associated

to the solutions of the underlying stochastic ODE. Using a computation similar to that

in [4,29], we derived an analytical threshold at which the variance of this density starts to

grow exponentially. The end result is the prediction, ad, for the delayed “take-off”value

at which the system transitions to the patterned Turing state. See the next section for

details and precise definition of ad. This threshold is indicated by vertical dashed lines at

respective values of a = ad in Figures 1 and 2. For sufficiently large ε, ad does not exist,

indicating that the transition cannot occur, resulting in extinction. Figure 1 illustrates an

excellent agreement between this analytic prediction and the full numerical simulation of

the system.

It has been known for a long time that a slow parameter drift induces a delay in

bifurcation [2, 34]. Recent studies have shown that noise also plays a key role in the

resilience of a homogeneous state against tipping points, and several effects have been

described, including bifurcation-driven tipping [9, 32, 35, 38, 45], noise-induced tipping

[18, 28, 54, 55], and rate-dependent tipping [1]. Delayed bifurcations with noise have

been studied in the context of stochastic ODE’s [4, 23, 29] with applications to climate

change [10, 11, 55], laser dynamics, [57] and neuronal bursting [30], among others; see
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Figure 2. Numerical verification of ad as given in (2.11) for (2.1). The slow drift is taken to be

a = a0 − εt with a0 = 3, σ0 = 0.0001, L = 22.839 and δ = 0.05. Top left: the evolution of max n

as a function of a with ε as indicated. The dashed lines show ad as given by (2.11). The patterned

state (blue on-line) to the left corresponds to a single-bump solution, whereas the patterned state on

the right corresponds to the wave-number 10 born from a Turing bifurcation at a = ap = 2.47439.

Top right: color plot of n(x, t) as it evolves in time. The Turing bifurcation point ap, the delayed

bifurcation ad and the fold point ac = 2 are indicated. Bottom left: Comparison of asymptotic and

full numerical results for ad. The hybrid curve is obtained by using the full homogeneous state

(2.12) instead of (2.2) when computing (2.11). The value of ad is estimated numerically as discussed

in the text, and an average over 50 simulations is used. We used N = 100, dt = 0.1 (see Appendix

A for numerical implementation details).

also [33] for an overview. All of these works study systems described by stochastic

ODE’s with a parameter drift. By contrast, very little work has been done on slow

passage problems in PDE’s with noise. However, see recent work [15] where some related

questions are studied. In particular, we show that the spatial component of the PDE

system, when combined with noise and parameter drift, plays a key role in preventing

activation of the tipping point.

2 Mathematical analysis of the effect of noise

Our starting point is the system (1.1), where we take a = a (εt) + noise and noise is

spatio-temporal Gaussian white noise with zero mean and standard deviation of σ0. For

pedagogical reasons, we will assume that both b and c are small and can be discarded

and we scale d to 1 (the analysis below can be modified to incorporate a more general

case that exhibits the same phenomenon; we expect to report on the more general case
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elsewhere soon). The system (1.1) then becomes

dn

dt
= δ

d2n

dx2
− n+ wn2 , (2.1a)

0 =
d2w

dx2
+ a(εt) − w − wn2 + σ0

dW

dt
, (2.1b)

where the spatio-temporal noise dW is defined in (1.4). For a constant a and with σ0 = 0,

the steady-state solution structure is shown in Figure 2 in black; it has a fold point at

a = ac = 2. For a > ac, there are three solutions: n = 0, w = a and

n± = a/2 ±
√
a2/4 − 1 , w± = 1/n± . (2.2)

For a < ac, the only spatially homogeneous solution is the desert state n = 0. Standard

linear analysis shows that the steady state n− is unstable, whereas n+ is stable with

respect to spatially uniform perturbations. However, n+ undergoes a Turing instability to

a patterned state at a = ap given by

ap =
3 − 2

√
2 − 2δ√(

3 − 2
√

2 − 2δ − δ
)
δ

. (2.3)

The dominant Turing branch is shown in blue in Figure 1. In the case where a is slowly-

varying with time, n± is a quasi-equilibrium state, n+ = n+(εt), given by (2.2) with a

replaced by a(εt). Linearizing near the quasi-equilibrium, we write

n(x, t) = n+(εt) + φ(x, t) , w(x, t) = w+(εt) + ψ(x, t) ,

with |φ|, |ψ| � 1, yielding

dφ

dt
+ εn′

+(εt) = δ
d2φ

dx2
+ φ+ n2

+ψ , (2.4a)

0 =

[
d2ψ

dx2
+

(
−1 − n2

+

)
ψ − 2φ

]
dt+ σ0dW . (2.4b)

We now separate variables in space. We write

φ(x, t) =
∑

φm(t) eimx , ψ(x, t) =
∑

ψm(t) eimx ,

where the sums are taken over all m such that m2π/L is an integer, where L is the length

of the domain, which we take to be periodic. Similarly, we decompose the noise in terms

of the same Fourier modes and each Fourier coefficient is again Gaussian distributed with

zero mean and standard deviation σ0

√
dt. The term n′

+(εt) in (2.4a) is constant in space

and therefore does not contribute to any non-zero (m� 0) modes. We obtain for m� 0,
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after dropping the subscripts,

dφ

dt
= −m2δφ+ φ+ n2

+ψ, (2.5a)

0 =
[
−m2ψ +

(
−1 − n2

+

)
ψ − 2φ

]
dt+ σ0

√
dtξ. (2.5b)

Solving for ψ in (2.5b) and substituting back into (2.5a), we obtain

dφ = α (εt)φdt+ β (εt)
√
dtξ , (2.6a)

where ξ is a Gaussian random variable with mean zero and variance 1 and where

α (s) = −m2δ + 1 − 2n2
+ (s)

m2 + 1 + n2
+ (s)

, (2.6b)

β (s) =
σ0n

2
+ (s)

m2 + 1 + n2
+ (s)

. (2.6c)

Equation (2.6a) is a variant of an Ornstein–Uhlenbeck process, with coefficients that are

slowly changing in time.

In the absence of noise/parameter drift, the mode m is unstable whenever α > 0. The

Turing bifurcation threshold (2.3) is obtained by setting α = 0 = ∂α/∂m and eliminating m

from the resulting system. However, the combined effect of slow drift and noise introduce

a “delay”in the bifurcation. To compute this delay, we proceed similarly to [4, 29] by

studying the density distribution u (φ, s) associated with (2.6a). More precisely, the integral∫ φ2

φ1
u(φ, s)dφ is by definition the probability that φ(s) ∈ (φ1, φ2) . The density satisfies the

Fokker–Planck PDE given by

ε
∂

∂s
u+ α(s)

∂

∂φ
(φu) =

β2(s)

2

∂2u

∂φ2
, (2.7)

with initial condition φ(0) = 0 in (2.6a) corresponding to u(φ, 0) = δ(φ), where δ(z) is the

Dirac delta function. In (2.7), we have let s denote the slow time εt.

Equation (2.7) can be transformed into a standard diffusion equation vS = vξξ subject

to initial condition v(ξ, 0) = δ(ξ) via a change of variables ξ = φ exp
(
− 1

ε

∫ s
0
α(ρ)dρ

)
, S =∫ s

0
β2(ŝ)
2ε

exp
(

− 2
ε

∫ ŝ
0 α(ρ)dρ

)
dŝ, and u(φ, t) = exp

(
− 1

ε

∫ s
0
α(ρ)dρ

)
v(ξ, S). The solution for

v(ξ, S ) is simply the fundamental solution of the diffusion equation v(ξ, S) = 1√
4πS

e−ξ2/(4S ).

This allows us to explicitly compute the variance in φ, σ2(s) =
∫ ∞

−∞φ
2u(φ, s) dφ, to obtain

σ2(s ;m) =

∫ s

0

β2(τ) exp

(
−2

ε

∫ s

τ

α(ρ)dρ

)
dτ. (2.8)

Let sp be the such that that α(sp) = 0, and we assume that α′(sp) > 0. That is, sp is the

point at which the mode m becomes unstable. Then for s > sp, Laplace’s method [3] yields

σ(s;m) ∼ exp

(
1

ε

∫ s

sp

α(τ)dτ

)
β(sp)

(
π

εα′(sp)

)1/4

, (2.9)
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where the dependence of σ on m is through that of α and β in (2.6b) and (2.6c). We define

the “take-off”time sd = sd(m) for the mode m to be such that σ(sd;m) = 1. Alternatively,

sd is such that σ � 1 when s < sd and σ 	 1 when s > sd. For a fixed mode m, the value

of sd is therefore found by solving simultaneously

α(sp) = 0; (2.10a)∫ sd

sp

α(s)ds+ ε log

(
β(sp)

(
π

εα′(sp)

)1/4
)

= 0 . (2.10b)

Equation (2.10) yields the time sd at which the solution density spread σ for a given mode

m starts to grow exponentially fast. Similar results – in the context of stochastic ODE’s

and for different applications – were derived using a related approach in [29], and also

in [4] without using the density formulation (2.7). Analogous results for linear α(s) and

constant β were also obtained in [53, 57, 64] using a similar analysis.

Note that, depending on the parameters, a solution for sd in (2.10) may not exist, in

which case the corresponding mode m is never activated. The first mode that gets activated

yields the delayed take-off value for a:

ad ≡ a(min
m
sd(m)), (2.11)

where the minimum is taken over all admissible modes m. These are the modes for which

the solution to the system (2.10) exists. If no such modes exist, no take-off value of a

exists, and the patterned state is never activated.

Figure 2 compares the analytic prediction (2.11) for ad and the delayed value ad,num
as estimated from direct numerical simulations of (2.1). To determine the latter, we first

define td,num as the time at which (maxx n − minx n)/meanx(n) first exceeds 1. We then

calculate ad,num = a(εtd,num). We note that, while the threshold of 1 is somewhat arbitrary,

halving it has a negligible effect on ad,num. Figure 2 also shows two simulations for four

different values of ε each with different random seeds. The bunching together of take-off

points for each ε illustrates that ad is insensitive to the particular seed chosen. Good

agreement is observed between asymptotics and numerics when ad is above the critical

point ac = 2.

Asymptotics as shown in Figure 2 (bottom left) predict extinction for ε > 0.09. However,

for the values of ε ∈ (0.009, 0.014), full numerical simulations show that homogeneous

quasi-state jumps to the patterned state branch even when a has been decreased to below

ac = 2 where the homogeneous steady state no longer exists. This is due to the presence

of slow relaxation dynamics: it is well known (see for example [21], chapter 6.5) that there

is a boundary layer of O(ε1/3) near the fold point, so that the homogeneous state “falls

off”not exactly at the fold point, but within O(ε1/3) of it. This delay is readily apparent

in Figure 2, where the numerics and asymptotics diverge near a = 2. To better capture

this behaviour (and thus to better approximate the values of ε for which the extinction is

observed), it suffices to replace the quasi-steady state approximation n+ and w+ in (2.2)

by the solution to the (slowly-evolving) homogeneous (ODE) system

dn

dt
= −n+ wn2 , 0 = a(εt) − w − wn2. (2.12)
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Moreover, it is no longer true that n+w+ = 1 so that equations (2.6b), (2.6c) and α, β are

replaced by

α (s) = −m2δ + (2wn− 1) − 2wn

m2 + 1 + n2
, (2.13a)

β (s) =
σ0n

2

m2 + 1 + n2
. (2.13b)

With this modification, the computation for ad is carried out as in before. This allowed

us to better capture the transition (or non-transition) to the patterned state even slightly

below the tipping point a = ac. This is clearly shown in the curve labelled “hybrid”and

its agreement with the full numerical result in Figure 2 (bottom left).

To simplify the exposition, we have assumed that b = c = 0 in (2.1). However, our

method can be generalized to remove these assumptions. If c � 0, then α in (2.6b) is

complex; in this case, the analysis proceeds as before but with α replaced by its real part.

The case b� 0 is more involved. In this case, α is an eigenvalue of a certain 2 × 2 matrix;

and furthermore the formula for β depends on an adjoint eigenvector of such a matrix.

Moreover, there is a Hopf bifurcation possible when b is too large. This is a work in

progress and we expect to report the results of this soon.

Our method should also be applicable to more complex models of patterned vegetation,

such those described in [6,26,31,36,37,63]; and more broadly to a general class of reaction-

diffusion PDEs that have a Turing bifurcation leading to pattern formation.

As shown in Figure 2, the Turing branch can also undergo a secondary bifurcation:

it eventually becomes unstable, leading to a “coarsening”process that results in fewer

number of localized regions [27, 62]. Whether the secondary bifurcation is activated

depends on the speed of the drift as Figure 2 illustrates: when ε = 0.002, the solution

has time to coarsen and persists beyond the fold point of the Turing branch. By contrast,

when ε = 0.004, the fold point of the Turing branch is reached before the coarsening

process is realized. For localized states, a similar phenomenon in the absence of noise was

recently studied in [61]. It would be interesting to extend these results to incorporate the

role of noise on these secondary bifurcations.

In conclusion, we have used a simple mathematical model to illustrate how patterned

states can provide a refuge and prevent extinction under stressed conditions, even as the

control parameter falls below the tipping point of a homogeneous state. The patterned

state can recover to the full vegetation state when the control parameter is dialled back

to favourable conditions. However, if the control parameter drifts too quickly toward

threatening conditions, the system may have no time to transition to the patterned state

before the tipping point is reached, resulting in an irreversible extinction. This simple

mechanism underscores the key role that spatial heterogeneity and noise have on the

resilience of the system. It also illustrates the importance of not only the absolute level of

climate change, but also the speed with which it occurs.
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Appendix A Numerical method

We use finite differences to solve (2.1) numerically. Because simulating PDE’s with noise

is not as standard, we include here the algorithm and Matlab code to do this, in particular

the details of how to implement the spatio-temporal noise correctly.

Discretize in space using N gridpoints, Δx = L/N, and in time using stepsize Δt so that

w(xk, tj) ≈ wkj , n(x, t) ≈ nkj where xk = Δxk with k = 1 . . . N, tj = Δtj. We use a simple

implicit–explicit Euler scheme as follows:

nkj+1 − nkj

Δt
= δ

nk+1
j+1 + nk−1

j+1 − 2nkj+1

(Δx)2
− nkj+1 + wkj

(
nkj

)2
,

0 =
wk+1
j+1 + wk−1

j+1 − 2wkj+1

(Δx)2
+ a(εtj) − wkj − wkj

(
nkj

)2
+ σ0

1

Δt
Wk

j .

Here, Wk
j is the discretization of the noise term. Care must be taken to truncate the

infinite series (1.4) to N modes to avoid over-sampling:

Wk
j =

√
Δt

N/2∑
m=−N/2+1

ξm(tj)e
imxk , (A 1)

where ξ−m = ξm when m < 0, and ξm(tk) = X + iY with X,Y normal random variable

of mean zero and variance 1 when m > 0; and N is assumed to be even. This can be

implemented via discrete Fast Fourier Transform.

Alternatively, note from the definition (A 1) that Wk
j is normally distributed (since it is

a sum of normal variables), that its mean is zero and its variance is given by

var(Wk
j ) = ΔtN.

Hence, an equivalent definition of Wk
j , and the one we will use, is

Wk
j =

√
Δt

√
Nξj(tk) (A 2)

where ξj(tk) is a real Gaussian random variable. We include self-contained matlab code –

see Figure A 1 – with further implementation details.

https://doi.org/10.1017/S0956792515000261 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000261


958 Y. Chen et al.

N=200;
L=22.839;
x=linspace(0,L,N);

delta =0.05;
sigma0 =0.0001;
eps =0.005;
a0=3;
a1=1.3;
dt=0.1;
T=(a0-a1)/eps;
tt=0:dt:T;
aa= a0-eps*tt;

n0=a0/2+ sqrt(a0^2/4 -1);
n=(x ' ) *0+n0; w=1./n;

dx=x(2)-x(1);

tout =0;

Lap=-2*diag(ones(1,N))+diag(ones(1,N-1) ,1)+diag(ones(1,N-1) ,-1);
Lap(1,2)=2;Lap(N,N-1)=2;

M1=delta*Lap/dx^2+eye(N)*(-1/dt -1);
M2=Lap/dx^2-eye(N);

maxn =[]; spread =[];
for idx=1: numel(tt)

a=aa(idx);
t=tt(idx);

noise=randn(N,1)*sqrt(dt)*sigma0*sqrt(N);
wnext=(M2-diag(n.^2))\(-a-noise/dt);
nnext=M1\(-n/dt-n.^2.*w);
n=nnext; w=wnext;

maxn(end+1)=max(n);
spread(end+1) = (max(n)-min(n))/mean(n);

if t>tout
tout=tout +10;
subplot (2,1,1);
plot(x,n,x,w);
legend( ' n ' , ' w ' ); xlabel( ' x ' );
title(sprintf( ' t=%g a=%g ' ,t, a));
drawnow;

end;
end;

subplot (2,1,2); hold on;
plot(aa,maxn);
at = interp1( spread , aa, 1);
plot([at,at],[0,3], ' --b ' );
xlabel( ' a ' ); ylabel( ' max(n) ' );
title(sprintf( ' a_d=%g ' ,at));

Figure A 1. Code for simulating (2.1) with a = a0 − εt+ σ0
dW
dt

. Copy and paste into matlab to run.
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