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RESOURCE-MEDIATED COMPETITION BETWEEN TWO PLANT
SPECIES WITH DIFFERENT RATES OF WATER INTAKE*

CHUNYI GAI\dagger AND THEODORE KOLOKOLNIKOV\dagger 

Abstract. We propose an extension of the well-known Klausmeier model of vegetation to two
plant species that consume water at different rates. Rather than competing directly, the plants
compete through their intake of water, which is a shared resource between them. In semiarid regions,
the Klausmeier model produces vegetation spot patterns. We are interested in how the competition
for water affects the coexistence and stability of patches of different plant species. We consider two
plant types---a ``thirsty"" species and a ``frugal"" species---that only differ by the amount of water they
consume per unit growth, while being identical in other aspects. We find that there is a finite range
of precipitation rate for which two species can coexist. Outside of that range (when the rate is either
sufficiently low or high), the frugal species out-competes the thirsty species. As the precipitation rate
is decreased, there is a sequence of stability thresholds such that thirsty plant patches are the first to
die off, while the frugal spots remain resilient for longer. The pattern consisting of only frugal spots
is the most resilient. The next most resilient pattern consists of all-thirsty patches, with the mixed
pattern being less resilient than either of the homogeneous patterns. We also examine numerically
what happens for very large precipitation rates. We find that for a sufficiently high rate, the frugal
plant takes over the entire range, out-competing the thirsty plant.

Key words. species coexistence, stability analysis, Klausmeier model, resource-mediated com-
petition, reaction-diffusion systems, pattern formation
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DOI. 10.1137/21M144623X

1. Introduction. Competition for resources has long been regarded as one of
the main mechanisms in structuring plant communities and natural selection [1, 2, 3].
Unlike animals, plants do not move, and as such their competition is primarily medi-
ated indirectly via competition for resources rather than direct territorial competition.
These resources mainly include light, nutrients, and water [4, 5, 6]. Nutrients and
water take place mostly underground and are considered among the most important
mechanisms [6, 7].

While many mathematical models have been developed to account for direct com-
petition among animals, there are fewer models of resource-mediated competition,
especially with spatially explicit components [4, 8, 9]. In this paper, we study a phe-
nomenological model of plant competition that incorporates competition for resources
and---critically---incorporating the spatial aspect of this competition.

Our model is an extension of the well-known Klausmeier vegetation model [10],
which was successfully used to model vegetation cover in semiarid regions where water
resources are limited. The sparsity of water induces an intraspecies competition and
can lead to self-organized vegetation patterns such as vegetation patches and stripes
[10, 11, 12, 13, 14, 15]. These patterns can be thought of as a transition state from
full vegetation to a desert state [16, 17, 11, 18, 19, 15].

In recent years more attention has been focused on the study of the competition
and coexistence of two vegetation species [9, 20, 21, 8]. For example, a two-species
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RESOURCE-MEDIATED COMPETITION BETWEEN PLANTS 577

reaction-diffusion system based on the single-species Klausmeier model is proposed
in [9], and detailed ecological intuition and derivation are provided. It is shown that
with a direct interspecific competition term (which corresponds to the shading effect)
included, the coexistence of two plant species can occur as a long transient state,
and eventually transit to a stable one-species state. Moreover, the impact of local
intraspecific competition other than competition for limited water resources on the
coexistence patterns is studied in [21, 8].

In this paper, we look at the competition for water between two plant species
with different water absorption rates in the water-limited regime, where the veg-
etation patches form. We are interested in how the competition for water affects
the coexistence and stability of patches of different plant species. We consider two
plant species---a ``thirsty"" species and a ``frugal"" species---that only differ by the
amount of water they consume per unit growth, while being identical in all other
aspects.

1.1. Model derivation. Our starting point is the following variant of the Klaus-
meier model on a one-dimensional domain | x| \leq L with no-flux boundary con-
ditions, incorporating two plant species and water-mediated competition between
them:

\partial tu1 =

plant dispersal\underbrace{}  \underbrace{}  
Du\partial xxu1  - 

plant mortality\underbrace{}  \underbrace{}  
\mu u1 +

plant growth of u1\underbrace{}  \underbrace{}  
d1u1 (c11u1 + c12u2)v,

(1.1)

\partial tu2 =

plant dispersal\underbrace{}  \underbrace{}  
Du\partial xxu2  - 

plant mortality\underbrace{}  \underbrace{}  
\mu u2 +

plant growth of u2\underbrace{}  \underbrace{}  
d2u2 (c21u1 + c22u2)v,

\tau \partial tv= Dv\partial xxv\underbrace{}  \underbrace{}  
water diffusion

+ a\underbrace{}  \underbrace{}  
rain fall

 - bv\underbrace{}  \underbrace{}  
evaporation

 - u1 (c11u1 + c12u2)v - u2 (c21u1 + c22u2)v\underbrace{}  \underbrace{}  
water uptake by plants

.

Here, u1 and u2 represent plant densities of the two types of plants, and v de-
notes the concentration of the water in the soil. To understand how limited water
resources affect competition between plant species u1 and u2, we will consider their
dynamics to be identical, except for the amount of water consumed per unit growth.
We take these dynamics as originally suggested by Klausmeier [10]. In the absence
of water, the plants wither at a rate \mu , and they ``diffuse"" through seed dispersal in
proportion to the diffusion constant Du. The plant growth is the product of water
uptake ui(ci1u1 + ci2u2)v and the yield of plant biomass per unit of water consumed
di (i = 1,2), in which (ci1u1 + ci2u2) describes how the two plants contribute to the
growth of plant ui via water infiltration feedback. The parameters ci1, ci2 account
for the different contributions to the water intake of the plant species ui. The water
diffuses through the soil according to the diffusion constant Dv. The parameter \tau 
represents the differing timescales in changes in water level (in days, say) versus those
in plant density (in months). Water is supplied by precipitation at rate a and is lost
due to evaporation at rate bv.

Here is our justification for modifying the plant growth term in (1.1). In the
classical Klausmeier model with a single plant species [10], the plant growth term
is \bfitu \cdot uv, where the first u represents positive water infiltration feedback induced
by vegetation. However, when there are two plant species, the presence of the other
plant species (say, u2) helps increase water infiltration but may not contribute to the
plant growth of its competitor (say, u1). In this case, more water available in soil via
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578 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

increased water infiltration does not guarantee more water available for each species.
In fact, each species in multispecies plant communities often has a negative effect upon
the other species' growth due to competition for the common water resource (see, e.g.,
[22, 23, 24] and references therein). To qualitatively describe the effect of the second
plant species in (1.1), we modify the infiltration feedback term to ci1u1+ci2u2, where
c11, c22 > 0, while c12, c21 could be any sign.

First, by rescaling, we reduce (1.1) to the following nondimensional form (see
derivation in Appendix A):

\partial tu1 = \varepsilon 2\partial xxu1  - u1 + u1

\biggl( 
u1 +

c12
c11

u2

\biggr) 
v,

\partial tu2 = \varepsilon 2\partial xxu2  - u2 +
d2c22
d1c11

u2

\biggl( 
c21
c22

u1 + u2

\biggr) 
v,(1.2)

\tau \partial tv=D\partial xxv+ a - bv - u2
1v

\varepsilon 
 - c22

c11

u2
2v

\varepsilon 
 - c12 + c21

c11

u1u2v

\varepsilon 
.

A key assumption we make to obtain (1.2) is that Du \ll Dv, because it is natural to
assume that the ``diffusion"" of plants through seed dispersal is on a much slower scale
than the water diffusion through the soil. Different regimes of Du,Dv could model
this assumption; in fact, a few parameter estimates for Du in previous studies show
that Du could range from 10 - 6m2/day [9, 25] to 10 - 3m2/day [10]. In this paper, we

are interested in the regime that Du =\scrO (\varepsilon 2), where \varepsilon \ll 1, and D\equiv \varepsilon 2

Du
Dv =\scrO (1).

In terms of the original parameters, \^a,\^b in (1.2) (hats are dropped; see
Appendix A) are scaled with \^a = d1c11\surd 

\varepsilon \mu 3c11
a and \^b = b

\mu . According to the realistic

parameter values that are valid for grass in semiarid regions reported in [9, 10], in
which \mu = 1.8, d1 = 100, c11 = 0.003, we assume that \mu ,dicii (i = 1,2) = \scrO (1). This
scaling shows that \^b\ll \^a in the limit \varepsilon \rightarrow 0. For simplicity, we assume \^b is sufficiently
small and can be ignored in the system (but see Figure 9 (right) and the discussion
in section 5, where the effect of increasing evaporation rate b is explored through
numerical simulations).

The parameters cij(i, j = 1,2) correspond to different contributions of the presence
of species uj to water uptake of species ui. Different scenarios can happen, depending
on the choice of cij . When c12, c21 > 0 and are on the same scale of c11, c22, u1 and
u2 collaborate and promote the growth of each other. This is because the presence of
one plant species helps water infiltrate in their areas more than absorbing soil water,
hence increasing the water intake rate of the other plant species. This scenario is
considered in [9], where the authors take c21 = c11, c22 = c21, representing identical
water infiltration for both species. In this work, we explore an alternative scenario,
where the presence of one plant species increases water infiltration capacity but does
not help the water intake of the other plant species due to their competition for
the water resource. This scenario corresponds to c12, c21 very small compared to
c11, c22, so the cross terms can be ignored due to the small ratio between c12, c21 and
c11, c22. Both scenarios are able to have coexistence of plant patterns; see Figures 1
and 2, which show the formation of plant patterns as obtained from full simulations
of system (1.1) by FlexPDE [26]. In Figure 1, we take c12 = c21 = 0 so that the cross
term u1u2v is ignored; then two types of spikes are formed, and they do not occupy
the same location. The behavior gets more complicated in the ``collaboration"" case.
In Figure 2, we take the same initial conditions for u1, u2 and the same parameter
values as in Figure 1 except c12 = c11 = 1, c21 = c22 = 0.5. For this parameter set, the
steady state contains overlapped spikes.
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RESOURCE-MEDIATED COMPETITION BETWEEN PLANTS 579

(a) u1, u2 at t = 0 (b) u1, u2 at t = 105 (c) Space-time plot of u1,u2

Fig. 1. (a), (b): Plot of numerical solution u1, u2 of system (1.1) at different times with initial
condition u1 = 1+ tanh(x+0.5

\varepsilon 
), u2 = 1 - tanh(x - 0.5

\varepsilon 
), v= 3, which leads to the spike pattern shown

in (b). The parameter values are Du = 0.032,Dv = 1, c12 = c21 = 0, c11 = 1, c22 = 0.5, d1 = 1, d2 =
2, \mu = 1, a= 1, b= 0,L= 3. (c): Space-time plot of u1 (``thirsty,"" in blue) and u2 (``frugal,"" in red).
Two types of spikes arise and slowly drift to their equilibrium locations.

(a) u1, u2 at t = 0 (b) u1, u2 at t = 7 (c) u1, u2 at t = 105

Fig. 2. Plot of numerical solution u1, u2 of system (1.1) at different times. The initial condi-
tions are u1 = 1+ tanh(x+0.5

\varepsilon 
), u2 = 1 - tanh(x - 0.5

\varepsilon 
), v= 3, which leads to the spike pattern shown

in (c). The parameter values are Du = 0.032,Dv = 1, c11 = c12 = 1, c21 = c22 = 0.5, d1 = 1, d2 =
2, \mu = 1, a= 1, b= 0,L= 3.

In this paper, we focus on the water competition scenario between two plant
species, i.e., we assume the ratios c12

c11
, c21c11

, c21c22
\ll 1. Then system (1.2) can be simplified

as follows:

\partial tu1 = \varepsilon 2\partial xxu1  - u1 + u2
1v,

\partial tu2 = \varepsilon 2\partial xxu2  - u2 +
c2d2
c1d1

u2
2v,(1.3)

\tau \partial tv=D\partial xxv+ a - u2
1v

\varepsilon 
 - c2

c1

u2
2v

\varepsilon 
,

where we write c1 = c11, c2 = c22. To simplify more parameters, we define the ratio of
water intake rates \beta \equiv c2

c1
and define the plant growth rate as \gamma . Since plant growth

is proportional to both the infiltration capability ci that contributes water intake as
well as the water-to-biomass conversion rate di, we then set \gamma = c1d1 = c2d2 to reflect
the fact that the two plant species grow at the same rate with different water intake
rates c1, c2. Then we obtain the system
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580 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

\partial tu1 = \varepsilon 2\partial xxu1  - u1 + u2
1v,

\partial tu2 = \varepsilon 2\partial xxu2  - u2 + u2
2v,(1.4)

\tau \partial tv=D\partial xxv+ a - u2
1v

\varepsilon 
 - \beta 

u2
2v

\varepsilon 
,

which we will refer to as the ``two-species vegetation model,"" and it satisfies no-flux
boundary conditions u1x = u2x = vx = 0 at x=\pm L.

The parameter \tau represents the differing timescales in changes in water level (in
days, say) versus those in plant density (in months); we assume \tau is sufficiently small
that the term \tau \partial tv does not affect the dynamics and can be discarded to leading
order. For simplicity, we take \tau = 0, and note that this assumption can be replaced
with ``\tau \ll D"" without any change in the results.

The ratio \beta indicates how thirsty is plant species u1 compared to u2. When
\beta < 1, the species u2 consumes less water than u1, and the opposite is true when
\beta > 1. Without loss of generality, we may also assume that 0 < \beta \leq 1, so that u1 is
more thirsty (per unit growth) than u2: u1 is the ``thirsty"" species, whereas u2 is the
``frugal"" species in such a case.

When \beta = 1, the two species are indistinguishable from each other, and the model
(1.4) behaves like the ``classical"" Schnakenberg model [27, 28],

(1.5) \partial tu= \varepsilon 2\partial xxu - u+ u2v, \tau \partial tv=D\partial xxv+ a - u2v

\varepsilon 
,

where u= u1 + u2 (this model is itself a special case of the Klausmeier model).

1.2. Main results. It is well documented that the Schnakenberg model (1.5)
admits spot solutions havingN concentrations in u [28, 27]. More generally, similar re-
sults for spike-stability analysis are obtained in singularly perturbed two-component
reaction-diffusion systems such as the Schnakenberg model, the Gierer--Meinhardt
model [29, 30], and the Gray--Scott model [31, 32, 33, 34]. However, there are impor-
tant differences both in the analysis and in the stability results for the 3-component
system (1.4) when \beta \not = 1.

The two-species model (1.4) inherits spike solutions from (1.5) but has a much
richer structure. Indeed, given any two nonnegative integers k1, k2, there exists a
solution with a total N = k1+k2 spikes corresponding to k1 spikes in u1 and k2 spikes
in u2. We shall refer to this as a (k1, k2) pattern. In this paper, we will focus on the
study of (k1, k2) spike solutions, which correspond to coexistent vegetation patches
in different types in the singularly perturbed system (1.4); see Figure 3 for some
examples. In particular, we are interested in how precipitation affects the behavior of
the localized spike patterns.

At first glance, given N spikes, there is a total of 2N possible ways to choose
their type (each spike can be either u1 or u2 type). One might then think that there
is a total of 2N possible patterns with different spike heights and radii. However, it
turns out that the spike ordering of spots does not affect spike profiles: only the total
number of each type matters. This is because the maximum value of v between any
two consecutive spikes (no matter whether they are of the same or different type)
must be equal due to continuity, while u1 and u2 are exponentially small away from
the spikes. As such, spikes of different types can be ``glued"" together into a single
pattern using translation invariance with any ordering. This is illustrated in Figure 3,
which shows two distinct orderings for the same number of parameters and number
of spikes. Both orderings, however, have the same height and profile for the spikes
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RESOURCE-MEDIATED COMPETITION BETWEEN PLANTS 581

Fig. 3. Two steady states of (1.4), consisting of k1 = 4 spikes of type u1 (blue) and k2 = 2
spikes of type u2 (red). Parameters are \varepsilon = 0.025, a= 8,L= 3,D= 1, \beta = 0.5. The spike heights and
profiles are the same for each type, regardless of the spike ordering. The local maxima of v are seen
to be identical, as indicated by the dashed horizontal line.

Fig. 4. Spike death as a is decreased. Here, a= 10 - 10 - 5t and other parameters are \beta = 0.5,
L= 3,D= 1, \varepsilon = 0.025. Color plot of u1 (``thirsty,"" in blue) and u2 (``frugal,"" in red) is shown as a
function of a. The subpanels only differ in initial conditions and are arranged from most resilient
pattern (on the left) to least resilient pattern (on the right). Note that a pattern of all-frugal patches
is the most resilient, followed by all-thirsty, and then mixed patterns.

u1 and u2. Note that all the local maxima of v in between the spikes have identical
heights. The value of v at points A,B,C is the same and is equal to the value of v at
D,E,F . At the same time, u1, u2 is exponentially small away from the spikes.

As such, there are only N + 1 patterns with distinct spike heights for fixed N ,
each corresponding to a different number of u1-spikes (from zero to N). Note that
although the spike ordering of spots has no effect on spike profiles, it can affect the
large eigenvalue instability as shown in section 3.2.

In Figure 3, the ``thirsty"" patches are shown in blue and correspond to u1, whereas
the ``frugal"" patches are in red, corresponding to u2. Note that the frugal plants have
bigger height; this is because they absorb less water per unit growth, and hence there
is more water remaining for them to grow more.

As rainfall rate a is decreased, competition of water between the plants triggers
the collapse of one of the spikes in the overall pattern. This process is illustrated in
Figure 4, which shows that as a is decreased, the thirsty spikes (in blue, corresponding
to u1) die out first, until only ``frugal"" (u2, in red) remains. Our main goal is to study
the stability of these N -spike equilibria. In particular, we derive the corresponding
eigenvalue problem and consider both the small eigenvalues of order \scrO (\varepsilon 2) and large
eigenvalues of order \scrO (1).

We now illustrate our main results. There are three thresholds that can affect the
existence and stability of (k1, k2) spike patterns. One is the large eigenvalue threshold
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582 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

Table 1
Instability thresholds af , as, and max(al) in N-spike patterns with N = 5,6. The critical values

are maximum in each column, which are the competition instability threshold a\ast that triggers the
collapse of one spike in the overall pattern. The parameters are L= 3, \beta = 0.5,D= 1.

al such that the large eigenvalue becomes unstable as a decreases below al. The other
two thresholds are small eigenvalue thresholds associated with either intraspecific
competition (i.e., competition within u1 or u2 type) or interspecific competition (i.e.,
competition between u1 and u2 type). The interspecific competition threshold is
denoted by the fold point af , and the intraspecific competition threshold is denoted
by as. The maximum of these three critical values gives the competition instability
threshold a\ast , which triggers the collapse of plant patches. By comparing al, af , and
as, we find that as is the dominant instability threshold for almost all (k1, k2) patterns,
except the case where only one thirsty spike exists (i.e., (1,N - 1) patterns with \beta < 1
and (N - 1,1) patterns with \beta > 1) and the dominant instability threshold is af . This
result is illustrated in Table 1, where the three thresholds af , as, and al for different
(k1, k2) patterns are computed. The large eigenvalue threshold al is dependent on
spike orderings, while the other two are not. Therefore af , as are unique for each
pattern, while al is different for different spike orderings. In Table 1, we compute the
maximum of al and compare it with other thresholds in all types of 5-spike patterns
and 6-spike patterns, and it can be seen that the instability threshold a\ast (maximum
in each column) is given by either as or af . Note that the large eigenvalue threshold
may not exist under the given parameter values, such as the (1,4) pattern in Table 1,
which means the (1,4) pattern is always stable with respect to the large eigenvalues.

For fixed N , we compared instability threshold a\ast for different (k1, k2) spike pat-
terns and found that the frugal species is more competitive. For example, if \beta < 1 (i.e.,
c2 < c1), then u2 is more competitive, and one u1-type spike will die out when bifur-
cation happens unless the pattern only contains u2-type spikes. Otherwise, u1 is more
competitive, and one u2-type spike will get killed when bifurcation occurs. Moreover,
among the N + 1 combinations of spike patterns, homogeneous spike patterns (i.e.,
(0,N) pattern or (N,0) pattern) are more resilient than mixed-spike patterns. These
results are shown in Table 2, where the instability thresholds in terms of a are given
for each (k1, k2) pattern. A smaller threshold a\ast suggests that the corresponding
pattern is more stable. As we see in Table 2, the 2nd row is the minimum in each
column, which indicates that for fixed N , (0,N) is the most stable pattern given that
\beta < 1. Moreover, for mixed N -spike patterns, the more ``frugal"" spikes are contained,
the more unstable the pattern is.

The setup of this paper is as follows. We construct the N -spike equilibria of the
system (1.4) in section 2. In section 3 we analyze the stability of the N -spike equi-
librium with respect to the large eigenvalues by deriving the corresponding nonlocal
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RESOURCE-MEDIATED COMPETITION BETWEEN PLANTS 583

Table 2
Theoretical predictions for competition instability thresholds a\ast with parameters L = 3, \beta =

0.5,D = 1. The critical values in the first row indicate the most stable patterns in each column,
while the critical values in the second row correspond to most unstable patterns. See also Figure 4
for comparison with numerics.

k1

a∗
(k1,k2)

N
2 3 4 5 6

0 0.67 1.22 1.89 2.64 3.46
1 1.20 2.63 4.33 6.28 8.43
2 0.94 2.21 3.80 5.65 7.72
3 1.73 3.22 4.98 6.98
4 2.67 4.34 6.26
5 3.73 5.56
6 4.90

eigenvalue problem (NLEP), as well as the small eigenvalues by looking at asymmetric
branches. The stability analysis is very similar to [27, 28] but with some key differ-
ences. We then show that the instability due to small eigenvalues is the dominant
instability. In section 4 we briefly discuss the implications of our findings. Finally,
we use numerics to explore what happens in the high-precipitation regime of large a,
and we conclude with some open questions in section 5.

2. Construction of \bfitN -spike solutions. In this section, we construct N -spike
equilibria of system (1.4), which contains k1 u1-spikes and k2 u2-spikes (k1+k2 =N).
To do this, we apply a similar analysis in [27] for the construction of equilibrium
solutions, and first construct a local canonical one-spike equilibrium solution on a
finite domain 2l. Since there are two types of spikes in the steady state as shown
in Figure 3, we construct one u1-spike and one u2-spike, and then apply the ``glu-
ing"" technique and translation invariance to build the patterns on the global do-
main ( - L,L). In such a way, the resulting equilibrium solution on ( - L,L) is C1

continuous.
We first construct one u1-spike equilibrium solution on the domain ( - l1, l1). Note

that there is no u2-spike on this domain, so the local one u1-spike solution centered
at x= 0 satisfies

\varepsilon 2\partial xxu1  - u1 + u2
1v= 0,  - l1 <x< l1,(2.1)

D\partial xxv+ a - u2
1v

\varepsilon 
= 0,  - l1 <x< l1,

u1x(\pm l1) = vx(\pm l1) = 0.

Now we apply the method of matched asymptotic expansions to construct the
solutions. We first look at the inner region, where we introduce an inner variable

y=
x

\varepsilon 
.

After collecting leading order terms we have

(2.2)
u1yy  - u1 + u2

1v= 0,  - \infty < y <\infty ,

vyy = 0,  - \infty < y <\infty .

We first solve the v equation in system (2.2). In order to match an outer solution,
we require that v be bounded as | y| \rightarrow \infty . In this way, we obtain that v is a constant
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584 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

independent of y in the inner region. Then solving the u1 equation in system (2.2)
yields

(2.3) u1 =
1

v1
w
\Bigl( x
\varepsilon 

\Bigr) 
,

in which v1 = v(0) and w(y) is the ``ground state"" profile satisfying

(2.4) w\prime \prime  - w+w2 = 0, w\prime (0) = 0, w(y)> 0, w (y)\rightarrow 0 as | y| \rightarrow \infty ;

it has a well-known explicit solution:

(2.5) w(y) =
3

2
sech2

\Bigl( y
2

\Bigr) 
.

In the outer region, defined away from \scrO (\varepsilon ) regions near x = 0, since \varepsilon \ll 1, u1

is localized, and the terms
u2
1v
\varepsilon can be asymptotically approximated as a multiple of

Dirac delta functions centered at x= 0. Therefore, v satisfies

(2.6) Dvxx + a=
6

v1
\delta (x) , vx(\pm l1) = 0.

Here we have used the fact that
\int 0+

0 - 
u2
1v
\varepsilon dx =

\int \infty 
 - \infty u2

1v1dy = 6
v1
, where (0 - ,0+) is

defined as a small interval that is slightly larger than the inner region. Integrating
equation (2.6) over the domain ( - l1, l1) and imposing Neumann boundary conditions,
we obtain that

(2.7) v1 =
3

al1
,

in which l1 is to be determined. We then solve (2.6) by introducing Green's function
G(x; l1) and let

(2.8) v(x) = \=v+
6

v1
G(x; l1)

for some constant \=v to be determined. Here G(x; l1) satisfies

(2.9) DGxx(x; l1) +
1

2l1
= \delta (x), Gx(\pm l1; l1) = 0,

\int l1

 - l1

G(x; l1)dx= 0,

which has the solution

(2.10) G(x; l1) = - 1

4Dl1
x2 +

1

2D
| x|  - l1

6D
.

The constant \=v is then determined by the matching condition v(0) = v1:

(2.11) \=v= v1  - 
6

v1
G(0; l1) = v1 +

l1
Dv1

.

The same calculations apply to the construction on one u2-spike on domain
( - l2, l2), where the local one u2-spike solution centered at x= 0 satisfies

\varepsilon 2\partial xxu2  - u2 + u2
2v= 0,  - l2 <x< l2,(2.12)

D\partial xxV + a - \beta 
u2
2V

\varepsilon 
= 0,  - l2 <x< l2,

u2x(\pm l2) = Vx(\pm l2) = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

6/
23

 to
 5

.1
98

.1
38

.1
18

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



RESOURCE-MEDIATED COMPETITION BETWEEN PLANTS 585

Fig. 5. An example of single u1 and u2 spike constructed on ( - l1, l1) and ( - l2, l2), separately.

Here we use V (x) to distinguish from the solution v(x) that corresponds to the u1-
spike. Solving system (2.12) using matched asymptotic expansions, we get

inner solution: u2 =
1

V2
w
\Bigl( x
\varepsilon 

\Bigr) 
, V2 \equiv V (0) =

3\beta 

al2
,(2.13)

outer solution: V (x) = \~V +
6\beta 

V2
G(x; l2),(2.14)

where w and G(x; l2) are given in (2.5) and (2.10), respectively. \~V is a constant
that can be determined by the matching condition V2 = V (0):

(2.15) \~V = V2  - 
6\beta 

V2
G(0; l2) = V2 +

\beta l2
DV2

.

We now construct an N -spike equilibrium solution on ( - L,L) with k1 u1-type
spikes and k2 u2-type spikes. To do so, we use translation invariance and the matching
condition that v(l1) = V (l2) so that v(x) is C1 continuous on the global domain
( - L,L). This yields the length constraint

(2.16) 2k1l1 + 2k2l2 = 2L.

It remains to find the radius of the spikes l1, l2. For the global patterns that only
contain u1-type or u2-type spikes (i.e., (0,N) or (N,0) pattern), it is easy to see that
l1 = l2 = L

N . For mixed-spike cases, we evaluate by imposing the continuity of v:
v(l1) = V (l2) (see Figure 5 for an example), and we obtain

(2.17) \=v - \~V =
\beta l2

2DV2
 - l1

2Dv1
.

Then, subtracting (2.15) from (2.11), we get

(2.18) \=v - \~V = v1  - V2  - 
\beta l2
DV2

+
l1

Dv1
.

Combining the two equations (2.17) and (2.18) yields

v1  - V2 =
3

2D

\biggl( 
\beta l2
V2

 - l1
v1

\biggr) 
.

Then we eliminate v1, V2, l1 using the fact that v1 = 3
al1

, V2 = 3\beta 
al2

and the length
constraint (2.16), we obtain the following polynomial of l2:

(2.19a) f(l2) = el42 + pl32 + ql22 + rl2 + s= 0,
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586 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

where

(2.19b)

e= (k21  - k22), p= 3Lk2  - 
k21L

k2
, q= - 3L2, r=

6D\beta k21
a2

+
6Dk31
a2k2

+
L3

k2
, s= - 6D\beta Lk21

a2k2
,

and once l2 is solved through (2.19), l1, v1, V2 can be determined, and the global
pattern on ( - L,L) can be constructed by gluing the u1 or u2 types of spikes in the
order as we wish.

In the end, we describe the equilibrium solution u1 = u1e, u2 = u2e, v = ve on
( - L,L). Near the jth spike, we have u1e =

1
v1
w
\bigl( x - xj

\varepsilon 

\bigr) 
or u2e =

1
v2
w
\bigl( x - xj

\varepsilon 

\bigr) 
, depending

on the type of jth spike, where xj is the center of the jth spike and can be expressed
as follows: x1 = - L+ l1 if the first spike is u1 type or x1 = - L+ l2 if the first spike
is u2 type, and for j = 1,2, . . . ,N  - 1,

(2.20) xj+1 =

\left\{     
xj + 2l1 if the j + 1th and jth spike are both u1 type,

xj + l1 + l2 if the j + 1th and jth spike are different type,

xj + 2l2 if the j + 1th and jth spike are both u2 type.

Then the equilibrium solution ve satisfies

(2.21) Dvxx + a=
6

v1

k1\sum 
j=1

\delta (x - xj) +
6\beta 

V2

N\sum 
j=k1+1

\delta (x - xj) , vx(\pm L) = 0,

and the solution to (2.21) is then readily represented in terms of an appropriate
Green's function. We summarize our results as follows.

Result 2.1. In the limit \varepsilon \rightarrow 0, system (1.4) has an N -spike equilibrium solution
that contains k1 u1-type spikes and k2 u2-type spikes, in which k1 \geq 0, k2 =N  - k1:

u1e(x) =

k1\sum 
j=1

w
\Bigl( 

x - xj

\varepsilon 

\Bigr) 
v1

,(2.22a)

u2e(x) =

N\sum 
j=k1+1

w
\Bigl( 

x - xj

\varepsilon 

\Bigr) 
V2

,(2.22b)

ve(x) = v0 +
6

v1

k1\sum 
j=1

G(x;xj) +
6\beta 

V2

N\sum 
j=k1+1

G(x;xj).(2.22c)

Here w(y) = 3
2 sech

2
\bigl( 
y
2

\bigr) 
, v1 = 3

al1
, V2 = 3\beta 

al2
, and xj are given in (2.20), in which l2

can be evaluated through (2.19) and l1 =
L - k2l2

k1
. G(x;xj) satisfies

(2.23) DGxx(x;xj) +
1

2L
= \delta (x - xj), Gx(\pm L;xj) = 0,

\int L

 - L

G(x;xj)dx= 0,

and it has the following solution:

(2.24) G(x;xj) = - 1

4DL
(x2 + x2

j ) +
1

2D
| x - xj |  - 

L

6D
, j = 1, . . . ,N.

The constant v0 is then determined by the matching condition v(xi) = v1 (suppose the
ith spike is u1 type):

(2.25) v0 = v1  - 
6

v1

k1\sum 
j=1

G(xi;xj) - 
6\beta 

V2

N\sum 
j=k1+1

G(xi;xj).
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RESOURCE-MEDIATED COMPETITION BETWEEN PLANTS 587

2.1. Fold point of \bfitN -spike equilibrium. The N -spike equilibrium has a fold
point af (k1, k2), corresponding to the double root of the polynomial (2.19) (also re-
ferred to as the discriminant of the polynomial). It can be obtained by solving a
polynomial system

f(l2) = 0, f \prime (l2) = 0.

We used Maple's groebner basis package to derive the following expression for the fold
point:

(2.26)
\Delta (a) = - 256e3s3 + 192e2prs2 + 128e2q2s2  - 144e2qr2s+ 27e2r4

 - 144ep2qs2 + 6ep2r2s+ 80epq2rs

 - 18epqr3  - 16eq4s+ 4eq3r2 + 27p4s2  - 18p3qrs+ 4p3r3 + 4p2q3s - p2q2r2,

where e, p, q, r, s are given in (2.19). Then af (k1, k2) can be obtained by solving
\Delta (af (k1, k2)) = 0 numerically.

Note that (2.19) is a fourth order polynomial when k1 \not = k2. When k1 = k2, it
becomes a cubic polynomial and the discriminant (2.26) simplifies to

(2.27) \Delta (a) = 27p4s2  - 18p3qrs+ 4p3r3 + 4p2q3s - p2q2r2.

Moreover, when \beta = 1, (2.18) can be factored as

\Delta (a) =
34992k61
a8k62

\biggl( 
k21k

2
2(k1  - k2)

2D2  - 2DNa2L3(k1  - 2k2)(k1  - k2/2)

81
 - L6a4

972

\biggr) 
\times 
\biggl( 
DN3  - L3a2

3

\biggr) 2

,

which implies that af =
\sqrt{} 

3DN3

L3 . This result overlaps the critical value for competition

instability for the case \beta = 1, which will be shown in section 3.1.
An example of a fold point with k1 = k2 = 2 is given in Figure 7. There are

three solutions for a > af and only one for a < af . By solving the full system (1.4)
numerically, we observe that the second branch is stable when a > af ; there are no
stable solutions for a < af . As a consequence, the fold point af corresponds to one
instability threshold of the system. Note that in the classical vegetation model which
corresponds to our model when \beta = 1, the radius is unique, which is l1 = l2 =

L
N . This

matches our result shown in the right panel of Figure 7, where as \beta = 1, both the
radius l2 and l1 equal L

2 = 0.75.

3. Stability analysis. In this section, we analyze the stability of N -spike pat-
terns constructed in section 2. Section 2.1 shows that there are three or four branches
(depending on whether k1 = k2 or not) corresponding to different equilibria. In this
paper we only consider and compute stability thresholds of the stable branch, such as
the middle branch in Figure 7. We will first compute the bifurcation point where an
asymmetric pattern bifurcates from the symmetric branch of the u1- or u2-spike. This
threshold characterizes the stability threshold of N spike equilibria with respect to
the small eigenvalues with \lambda \rightarrow 0 as \varepsilon \rightarrow 0. We will then derive a nonlocal eigenvalue
problem (NLEP) which determines the stability of large eigenvalue (\scrO (1)). Note that
the large eigenvalue threshold can be affected by the order of spikes, so in this section
we consider spike steady state in general orderings. Numerical simulations are used
to validate our stability results.
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588 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

3.1. Asymmetric branches and competition instability thresholds. The
primary mechanism that drives spike instability in one-dimensional reaction-diffusion
models corresponds to a small-eigenvalue bifurcation [27, 28, 35]. The computation of
small eigenvalues for the Schnakenberg model was done in [28], which shows that for a
symmetric k-spike equilibrium solution, the small eigenvalues are all real and negative
below the bifurcation point. Above the bifurcation point, k - 1 small eigenvalues cross
zero and the symmetric k-spike equilibrium becomes unstable. Instead of computing
the small eigenvalues fully by deriving the eigenvalue problem, it was shown in [27]
that this bifurcation point (at which there is a zero small eigenvalue) is characterized
precisely by the emergence of an asymmetric solution (e.g., two spikes of unequal
height) off the symmetric branch (i.e., spikes of equal height). In our two-species
system, there are two types of spikes in the equilibrium solution. As expected, our
two-species system inherits a similar structure, except that it has two such bifurcation
points: one for each type of species, which we denote by as1, as2. By taking the
maximum of the two, we will obtain the bifurcation threshold as = max(as1, as2),
which is responsible for the destabilization of the (k1, k2) pattern.

The key to computing as1, as2 is to compute the value of v where v\prime = 0. These
points occur in between any two consecutive spikes (the two consecutive spikes can
be of the same type or different types). From (2.8) we have

(3.1)
v(xj + l1) = g(l1) =

al21
2D

+
3

al1
, when xj is the center of u1,

v(xj + l2) = h(l2) =
al22
2D

+
3\beta 

al2
, when xj is the center of u2.

Since the steady state v(x) is continuous at the point in between two consecutive
spikes of different types, and noting that each spike is symmetric about its center
x= xj , we have v(xj + l1) = v(xj+1 - l2) = v(xj+1+ l2) (where the ordering is u1-type
spike on the left of u2-type spike) or v(xj + l2) = v(xj+1  - l1) = v(xj+1 + l1) (where
the ordering is u2-type spike on the left of u1-type spike). This yields the following
equation:

(3.2)
al21
2D

+
3

al1
=

al22
2D

+
3\beta 

al2
.

The function g(l1) has a unique global minimum point at l1c, and it satisfies g\prime (l1)< 0
on (0, l1c) and g\prime (l1) > 0 on (l1c,\infty ). Hence above the minimum point, there exist
l1 and \^l1 such that g(l1) = g(\^l1), and we can construct asymmetric spike solutions
with the two different spike radii (see more details in [27, 36]). Such solutions exist
for l1 < l1c < \^l1, and the same applies to h(l2). Therefore the bifurcation point

corresponds to minimum points in (3.1). This is given by setting \partial 
\partial l1

\bigl( al21
2D + 3

al1

\bigr) 
= 0

or \partial 
\partial l2

\bigl( al22
2D + 3\beta 

al2

\bigr) 
= 0 for as1 and as2, respectively, which yields

(3.3) as1 =

\sqrt{} 
3D

l31
,

(3.4) as2 =

\sqrt{} 
3\beta D

l32
.

To calculate as1, we plug (3.3) into (3.2) and replace l2 by L - k1l1
k2

from (2.1); this
yields the following cubic polynomial in terms of l1:

(3.5) (k31  - 3k1k
2
2  - 2\beta k32)l

3
1 + 3L(k22  - k21)l

2
1 + 3k1L

2l1  - L3 = 0.
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RESOURCE-MEDIATED COMPETITION BETWEEN PLANTS 589

Fig. 6. Plot of three thresholds af (2.27), as1 (3.3), and as2 (3.4) versus \beta for a (2,2) spike
pattern (left panel) and a (1,2) spike pattern (right panel). In the left figure ((2,2) pattern), as =
as1 is the dominant instability threshold, while in the right figure (for (1,2) pattern), there is no
competition within the u1-spike, so only as2 exist and as2 <af ; thus af is the dominant instability
threshold. Here the parameters are D= 1,L= 3.

We then can get the value of as1 by solving this polynomial for l1 and plugging it
back into (3.3). The value for as2 in (3.4) can be calculated in the same way.

These two critical values (3.3), (3.4) suggest that as a decreases below as1
(or as2), asymmetric patterns in u1 (or u2) type appear. This is analogous to the
classical Schnakenberg model, where asymmetric patterns are proved to be unstable
[27], and the corresponding unstable eigenfunction introduces competition between
the spikes. Therefore, one of the spikes is annihilated in finite time when compe-
tition instability occurs. Here in the case of two species, the bifurcation threshold
as = max(as1, as2). Suppose that \beta < 1; then l1 < l2 (this claim is proved in Ap-
pendix B), and it follows that as1 > as2. Thus as = as1, which implies that the spike
annihilation within the u1-type spike happens first. Similarly, we get as = as2 when

\beta > 1. For the case \beta = 1, we have l1 = l2 =
L
N so that as = as1 = as2 =

\sqrt{} 
3DN3

L3 . This

recovers the threshold previously obtained in [27, 28] for the classical Schnakenberg
model. The above computations require that there be at least two spikes of type u1

(or u2) (which guarantees the existence of intraspecific competition within u1 and
u2). In summary, we obtain

(3.6) as =

\left\{           

\sqrt{} 
3D
l31
, k1 \geq 2 with either (a) \beta < 1 and k2 is arbitrary

or (b) \beta > 1 and k2 = 1,\sqrt{} 
3\beta D
l32

, k2 \geq 2 with either (c) \beta > 1 and k1 is arbitrary

or (d) \beta < 1 and k1 = 1.

Note that the threshold (3.6) computes the competition within the same type of
spikes, and it does not cover the competition between u1- and u2-spikes. Therefore,
this result does not work for the (1,1) pattern. However, as we compare as and af
obtained in section 2.1, we find that af < as in the cases (a), (c) shown in (3.6) and

af = as =
\sqrt{} 

3DN3

L3 when \beta = 1. This is shown in Figure 6, where we compared af and

as for (2,2) and (1,2) patterns. We conjecture that af is another small eigenvalue
threshold that corresponds to interspecific competition between u1- and u2-spikes.

There exist two special cases (case (b), (d) in (3.6)): either k1 = 1 (i.e., (1,N  - 1)
spike patterns) with \beta < 1, or k2 = 1 (i.e., (N  - 1,1) spike patterns) with \beta > 1. For
these cases, as < af , so the dominant instability is triggered by the fold point af as
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590 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

computed in section 2 instead of as. This is illustrated in Figure 6, where in the left
panel ((2,2) pattern) as = as1 > af , and the dominant threshold is as, while in the
right panel ((1,2) pattern) af > as = as2, so the dominant threshold is af . This is
further illustrated in Figure 4, which shows an excellent agreement between numerics
and theoretical results. For example, the last panel in Figure 4 shows that the first
spike death is caused by as = 7.7247 in a (2,4) pattern, and the second spike death is
caused by af = 6.2754 in a (1,4) pattern. The theoretical thresholds as and af can
be found in Table 1.

3.2. Large eigenvalues and nonlocal eigenvalue problem. In this section
we compute the large \scrO (1) eigenvalues by deriving the corresponding eigenvalue prob-
lem. We start by linearizing around the steady state given in (2.22). That is, we let
u1 = u1e+ e\lambda t\varphi 1, u2 = u2e+ e\lambda t\varphi 2, and v= ve+ e\lambda t\xi . Note that here the (k1, k2) spike
steady states are considered in general spike orderings without changing the profile of
u1 and u2. Upon substituting into (1.4) and assuming that | \varphi 1| \ll 1, | \varphi 2| \ll 1, | \xi | \ll 1
we obtain the following eigenvalue problem:

\lambda \varphi 1 = \varepsilon 2\varphi 1xx  - \varphi 1 + 2u1eve\varphi 1 + u2
1e\xi , \varphi 1x(\pm L) = 0,(3.7a)

\lambda \varphi 2 = \varepsilon 2\varphi 2xx  - \varphi 2 + 2u2eve\varphi 2 + u2
2e\xi , \varphi 2x(\pm L) = 0,(3.7b)

\tau \lambda \xi =D\xi xx  - 
1

\varepsilon 

\bigl[ 
2u1eve\varphi 1 + 2\beta u2eve\varphi 2 +

\bigl( 
u2
1e + \beta u2

2e

\bigr) 
\xi 
\bigr] 
, \xi x(\pm L) = 0.(3.7c)

Near the jth spike, we change variables x = xj + \varepsilon y. To leading order, we obtain
\xi (y)\sim \xi j := \xi (xj), and in the inner region we have

(3.8) \lambda \varphi \sim \varphi yy  - \varphi + 2w\varphi +
w2

v(xj)2
\xi j ,

where

\varphi =

\biggl\{ 
\varphi 1, jth spike is u1 type,
\varphi 2, jth spike is u2 type,

v(xj) =

\biggl\{ 
v1, jth spike is u1 type,
v2, jth spike is u2 type.

Due to localization of the coefficients in (3.8), we look for an eigenfunction for (3.8)
in the form

\varphi \sim 
N\sum 
j=1

\Phi j

\biggl( 
x - xj

\varepsilon 

\biggr) 
,

where \Phi j(y)\rightarrow 0 as | y| \rightarrow \infty . In the outer region, both \varphi 1 and \varphi 2 are assumed to be
localized functions, so \xi satisfies

(3.9) \xi xx  - \mu 2\xi =

N\sum 
j=1

cj\delta (x - xj), \xi x(\pm L) = 0,

where \mu =
\sqrt{} 

\tau \lambda 
D and cj is defined as

(3.10) cj =

\left\{   
1
D

\Bigl( 
2
\int \infty 
 - \infty w(y)\Phi j(y)dy+

6
v2
1
\xi j

\Bigr) 
, jth spike is u1 type,

\beta 
D

\Bigl( 
2
\int \infty 
 - \infty w(y)\Phi j(y)dy+

6
v2
2
\xi j

\Bigr) 
, jth spike is u2 type.

We first solve (3.9) and write \xi (x) as

(3.11) \xi =

N\sum 
j=1

cjG
(\mu )(x;xj),
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where G(\mu )(x;xj) satisfies

(3.12) G(\mu )
xx (x;xj) - \mu 2G(\mu )(x;xj) = \delta (x - xj), G(\mu )

x (\pm L;xj) = 0.

Solving (3.12) yields

(3.13) G(\mu )(x;xj) = - 1

\mu sinh(2\mu L)

\biggl\{ 
cosh (\mu (x+L)) cosh (\mu (xj  - L)) , x < xj ,
cosh (\mu (xj +L)) cosh (\mu (x - L)) , x > xj .

Evaluating (3.11) at x= xj , we obtain that

\xi (xi) = \xi i =

N\sum 
j=1

cjG
(\mu )
i,j ,

where G
(\mu )
i,j =G(\mu )(xi;xj) given in (3.13). In matrix form, it can be written as

(3.14) \vec{}\xi = \scrG (\mu )\scrB 
\biggl( 

2

D

\int 
w\vec{}\Phi dy+

6

D
\scrV \vec{}\xi 
\biggr) 
,

where

(3.15)

\vec{}\Phi \equiv 

\left(   \Phi 1

...
\Phi N

\right)   , \vec{}\xi \equiv 

\left(   \xi 1
...
\xi N

\right)   , and \scrG (\mu ) \equiv 

\left(       
G

(\mu )
1,1 G

(\mu )
1,2 \cdot \cdot \cdot G

(\mu )
1,N

G
(\mu )
2,1

. . . \cdot \cdot \cdot G
(\mu )
2,N

...
...

. . .
...

G
(\mu )
N,1 G

(\mu )
N,2 \cdot \cdot \cdot G

(\mu )
N,N

\right)       ,

and \scrB and \scrV are diagonal matrices with

(3.16)

\scrB j,j =

\biggl\{ 
1, jth spike is u1 type,
\beta , jth spike is u2 type,

and \scrV j,j =

\Biggl\{ 
1
v2
1
, jth spike is u1 type,

1
v2
2
, jth spike is u2 type.

Solving system (3.14) we get

(3.17) \vec{}\xi =
2

D

\biggl( 
\scrI  - 6

D
\scrG (\mu )\scrB \scrV 

\biggr)  - 1

\scrG (\mu )\scrB 
\int 

w\vec{}\Phi dy.

Note that at the jth spike, we can rewrite (3.8) as

(3.18) \lambda \Phi j =L0\Phi j +
w2

v(xj)2
\xi j ,

where L0\Phi j =\Phi jyy  - \Phi j + 2w\Phi j , and in matrix form we have

(3.19) \lambda \vec{}\Phi =L0
\vec{}\Phi +

w2

v(xj)2
\vec{}\xi .

Substituting (3.17) into (3.19), the resulting eigenvalue problem becomes

(3.20) \lambda \vec{}\Phi =L0
\vec{}\Phi +M

w2
\int 
w\vec{}\Phi dy\int 

w2dy
,
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592 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

where

(3.21) M =
2
\int 
w2dy

D
\scrV 
\biggl( 
\scrI  - 6

D
\scrG (\mu )\scrB \scrV 

\biggr)  - 1

\scrG (\mu )\scrB .

The solution to (3.20) is \vec{}\Phi (y) = \vec{}m\phi 0(y) as the eigenvalue problem is the same
for each j given that \vec{}m is the eigenvector for the matrix problem M \vec{}m = \eta \vec{}m. Then
(3.20) becomes

(3.22) \vec{}m\lambda \phi 0 = \vec{}mL0\phi 0 +M \vec{}m
w2
\int 
w\phi 0dy\int 
w2dy

,

and this yields the following nonlocal eigenvalue problem:

(3.23) \lambda \phi 0 =L0\phi 0 + \eta w2

\int 
w\phi 0dy\int 
w2dy

,

where \eta is the eigenvalue of M given in (3.21) and \vec{}m is the corresponding eigenvector.
Note that when \beta = 1, u1, u2 are essentially the same, so that l1 = l2 = L

N and
v1 = v2 =

3N
aL . Then matrix M in (3.21) becomes

(3.24) M =
2
\int 
w2

Dv21

\biggl( 
\scrI  - 6

Dv21
\scrG (\mu )

\biggr)  - 1

\scrG (\mu ),

which recovers the results of large eigenvalues in the two-component Schnakenberg
model [28].

For our system with \beta \not = 1, since it's hard to compute the general results for
eigenvalues of M given in (3.21), here we consider a special case where there are 1
u1-type and 1 u2-type spikes. In this case we have

M =
2
\int 
w2

D

\Biggl( 
1
v2
1

0

0 1
v2
2

\Biggr) \Biggl( 
1 - 6

Dv2
1
G

(\mu )
1,1  - 6\beta 

Dv2
2
G

(\mu )
1,2

 - 6
Dv2

1
G

(\mu )
2,1 1 - 6\beta 

Dv2
2
G

(\mu )
2,2

\Biggr)  - 1\Biggl( 
G

(\mu )
1,1 \beta G

(\mu )
1,2

G
(\mu )
2,1 \beta G

(\mu )
2,2

\Biggr) (3.25)

=C

\Biggl( 
Dv22G

(\mu )
1,1  - 6\beta det(\scrG ) Dv22\beta G

(\mu )
1,2

Dv21G
(\mu )
2,1 Dv21\beta G

(\mu )
2,2  - 6\beta det(\scrG )

\Biggr) 
,

where \scrG =
\bigl( G(\mu )

1,1 G
(\mu )
1,2

G
(\mu )
2,1 G

(\mu )
2,2

\bigr) 
and C =

2
\int 
w2

D2v2
1v

2
2 - 6\beta Dv2

1G
(\mu )
2,2 - 6Dv2

2G
(\mu )
1,1+36\beta det(\scrG )

.

In the limit \tau \rightarrow 0, we have \mu \rightarrow 0, and after some algebra matrix M can be
simplified as

(3.26) M =
 - 2

\beta Dv21 +Dv22 + 6\beta L

\biggl( 
Dv22 + 6\beta L \beta Dv22

Dv21 \beta Dv21 + 6\beta L

\biggr) 
.

Computing the eigenvalues of M , we obtain that

(3.27) \eta 1 = - 2, \eta 2 =
 - 12\beta L

\beta Dv21 +Dv22 + 6\beta L
.

Let's recall the following lemma from [29].
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RESOURCE-MEDIATED COMPETITION BETWEEN PLANTS 593

Table 3
Large eigenvalue instability thresholds al in different spike orderings. The parameters are L=

3, \beta = 0.5,D= 1. Note that in the seco2nd table we only show the spike orderings that have distinct
thresholds.

Lemma 3.1. Consider the nonlocal eigenvalue problem

(3.28) \phi \prime \prime  - \phi + 2w\phi  - \alpha 

\int 
w\phi \int 
w2

w2 = \lambda \phi .

(1) If \alpha > 1, then there exists a positive eigenvalue to (3.28).
(2) If \alpha < 1, then either \lambda = 0 with the eigenfunction \phi = c0w

\prime for some constant
c0 or

Re(\lambda )< 0.

From Lemma 3.1, we see that the critical threshold for the stability of large eigenvalues
is such that

(3.29)  - 1 =
 - 12\beta L

\beta Dv21 +Dv22 + 6\beta L
.

Plugging in v1 = 3
al1

, v2 = 3\beta 
al2

, we get the critical threshold for the stability of large
eigenvalues (denoted as al):

(3.30) al =

\sqrt{} 
3D

2L

\biggl( 
1

l21
+

\beta 

l22

\biggr) 
.

For the more general case N \geq 3, large eigenvalue threshold al corresponds to
the value of a for which the largest eigenvalue of M equals  - 1. Table 3 shows the
thresholds al for different spike orders in (3,1) and (3,2) spike patterns. Note that
for different orders of spikes, al can be different; in Table 3 we denote the ordering
of u1 and u2 as s, l. Although there are

\bigl( 
N
k2

\bigr) 
different spike orderings for fixed k1, k2,

the number of instability thresholds is less than
\bigl( 
N
k2

\bigr) 
since the threshold is the same

when ordering is just flipped (for example, see Table 3, which shows that the large
eigenvalue threshold is the same for (sss l) and (l s s s)).

It is well known that for two-component reaction-diffusion systems the competi-
tion instability threshold in N -spike equilibria (N \geq 2) cross the threshold for small
eigenvalues first [27, 28, 35]. And it appears to still be the case in the two-species
vegetation system (1.4). We compare the instability thresholds al and as for (k1, k2)
patterns numerically; the results are shown in Figure 7, where we tried different \beta 
for a (2,2) spike pattern, and it is always the case as > al. As we increase \beta to 1,
as overlaps with af , and al does not exist on the stable branch, which means the
whole branch is stable to large eigenvalues. Similar results can be obtained for other
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594 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

Fig. 7. Radius of u2-spike l2 versus a for a (2,2) spike pattern. The instability thresholds
on the stable branch are shown. Solid lines: linearly stable for both the small eigenvalues and
the large eigenvalues; dash-dotted lines: unstable for the small eigenvalues but stable for the large
eigenvalues; dotted line: unstable for both small eigenvalues and large eigenvalue. Here we choose
\beta = 0.5,0.99,0.9999 from left to right; the other parameters are D= 1,L= 3.

patterns. See also Table 1 for more results on the comparison between al and as.
We then conjecture that for arbitrary (k1, k2) patterns it is still the case that the
competition instability threshold as crosses the threshold for small eigenvalues first.

We have as >al and N -spike equilibria are stable with respect to both large and
small eigenvalues when a > as; when al < a < as they are stable with respect to
large eigenvalues but unstable with respect to small eigenvalues; when a< al, N -spike
equilibria become unstable with respect to both large and small eigenvalues.

We now combine these results with those in section 3.1. We have shown in Figure 6
that as >af for k1 \geq 2 (\beta < 1) or k2 \geq 2 (\beta > 1) and as <af for either (1,N - 1) spike
patterns (\beta < 1) or (N - 1,1) spike patterns (\beta > 1). For the former case, af <al <as,
thus as is the dominant instability threshold; for the latter one, we found that al does
not exist in the stable branch, and af >as is the dominant instability threshold.

Therefore, there are N + 1 distinct instability thresholds denoted as a\ast for each
N , each corresponding to a different number of u1 spikes (from zero to N). Moreover,
we are curious about stability ordering within these patterns. We compared a\ast for
different (k1,N  - k1) patterns with fixed N , and Table 1 illustrates the results for
various patterns. This is further illustrated in Figure 4.

We now summarize the result as follows.

Result 3.2. An N -spike steady state to system (1.4) which contains k1 u1-spikes
and k2 u2-spikes becomes unstable when a decreases to a\ast = max(af , as). Both af
and as can be explicitly computed numerically: af is the largest real root of (2.26)
and as can be obtained by solving the coupled system (3.5) and (3.6). Moreover, using
(k1, k2) to represent different patterns regardless of the order of different spikes, where
k1 = 0, . . . ,N, k2 =N  - k1, we compare a\ast for different patterns which are shown in
Table 1 and find that the stability of the patterns has the following order (from most
stable to most unstable) depending on the ratio of water intake rate \beta :

\beta < 1 : (0,N)> (N,0)> (N  - 1,1)> (N  - 2,2)> \cdot \cdot \cdot > (1,N  - 1),

\beta > 1 : (N,0)> (0,N)> (1,N  - 1)> (2,N  - 2)> \cdot \cdot \cdot > (N  - 1,1).

It seems surprising that the spike pattern that contains only thirsty species is more
stable than mixed patterns. This is because the thirsty patches in mixed patterns have
a smaller size (or radius) than the pure thirsty vegetation pattern (see Appendix B for
proof of this claim). Hence the thirsty patches in mixed patterns are less competitive
and are more likely to die out. This can also be verified by the dominant competition

threshold formula. Suppose \beta < 1, so l1 is the radius of thirsty patches and as =
\sqrt{} 

3D
l31
;
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RESOURCE-MEDIATED COMPETITION BETWEEN PLANTS 595

Fig. 8. Instability regions for all possible combinations of 3-spike patterns. Below each line the
corresponding (k1, k2) pattern becomes unstable and one u1-type spike will get killed when k1 \geq 1 or
one u2-type spike gets killed when k1 = 0. The red dots are obtained from full simulations of system
(1.4). Here the parameters are L= 2,D= 1, \varepsilon = 0.03.

then a smaller radius yields a larger competition threshold, which suggests that the
corresponding pattern is more unstable.

Figure 8 shows stability regions for all possible combinations of 3-spike patterns.
As a decreases below the critical line, the corresponding pattern becomes unstable.
The colored lines are plotted using analytical results a\ast =max(af , as), and the red dots
are obtained from full simulations of system (1.4) by FlexPDE, in which we look for
the numerical thresholds by gradually decreasing a until the pattern becomes unstable
and one thirsty patch collapses. The numerical simulations are in full agreement with
our analytical results.

4. Discussion. We have proposed a two-species model (corresponding to two
different plants), with competition for a common resource (water). This model is
based on the well-known Klausmeier model of vegetation patterns. For simplicity, we
concentrated on two plant species that grow at the same rate but have different rates
of water consumption: thirsty and frugal plants. We have shown that in the water-
constrained regime where spike patterns exist, the two species can coexist. However,
as the precipitation rate decreases, it eventually induces an interspecies competition
between the thirsty plants, leading to the death of some of them. The ``frugal"" plants
are initially unaffected by the water sparsity as long as the thirsty plants are still
present, and thus can out-compete the more ``thirsty"" plant, leading to the death of
thirsty plants and survival of the more frugal plant.

We found two distinct mechanisms which triggered the dominant instability, de-
pending on the number of spikes for each type. When only one spike of the thirsty
plant is present (represented in blue in Figure 4), the dominant instability corresponds
to a fold point af as derived in section 2.1, and leads to the death of the blue spike
when triggered. When more than one blue spike exists, the dominant instability cor-
responds to asymmetric spike bifurcation at as as explained in section 3.1. This leads
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596 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

to competition instability among the blue spikes, with one of the blue spikes getting
killed. In summary, no matter which mechanism triggers spike death, the blue spikes
always get killed first until only red spikes remain. In either case, when \beta = 1 (so that
the two species are indistinguishable), the instability thresholds correspond exactly to
those derived for a symmetric N -spike configuration for the Schnakenberg model in
[27, 28]. Note that in section 3.1 the conclusion that the dominant instability corre-
sponds to asymmetric spike bifurcation at as rather than large eigenvalue instability
threshold al is a conjecture. An interesting open problem is to prove it analytically.

There have been many studies on the competition and coexistence of several plant
species [9, 20, 21, 8]. For example, [9] studies metastable coexistence patterns arising
from one-species Turing-type patterns. Different from [9], where the coexistence pat-
terns are unstable but can persist for a long time, we focus on the study of localized
spike solutions, which correspond to coexistent vegetation patches in different types in
water-limited regions. These multispike vegetation patterns are stable for appropriate
parameters.

Studies on localized spike solutions for the Klausmeier model have been done; see
[37], where an extended version of the Klausmeier model with nonconstant parameters
is considered. In [37], similar techniques are applied to construct N -spike solutions,
and the dynamical movements of spikes are studied by deriving the corresponding
ODEs that describe the motion of each spike location. In our paper, instead of look-
ing at the spike motions, we study the existence and stability of localized patterns.
Moreover, our two-species vegetation model (1.4) exhibits a richer variety of local-
ized spatiotemporal patterns compared to the singularly perturbed two-component
reaction-diffusion systems.

5. Outlook. Numerous possible extensions and modifications of model (1.4) are
possible for future study. For example, the water uptake can be periodic having ``pulse
phase"" of water intake followed by ``pulse interphase,"" where water uptake ceases; this
can have a large effect on coexistence [38]. Another extension is to model the effects
of light absorption separately from nutrients, which can lead to cooperation between
different plant species that specialize in different ecological niches. For instance, in
[39] the authors showed that mixed pine-oak forests can enhance each other due to
differing light/nutrient requirements.

What happens as precipitation rate is increased? For the Schnakenberg model, it
is well known that as a is increased, spot replication is observed [19, 35]. A further
increase of a eventually leads to a uniform-vegetation state [15]. In the case of two
species, self-replication is also observed for sufficiently large a; see Figure 9 (left),
where the initial condition consists of two vegetation patches of different types and
we choose a large precipitation rate a = 25. As we see in Figure 9 (left), as time
goes on, the two species self-replicate to multispots and eventually coexist. However,
depending on parameters, this can further lead to the more frugal plant species taking
over the entire domain. See Figure 9 (center), where we increase precipitation rate
a to 35; then self-replication occurs but eventually the frugal species takes over the
entire domain. This suggests that the coexistence of two plant species occurs only for
precipitation parameter a\in (acoexistence,min, acoexistence,max). It is an open question to
determine the upper boundary of this interval.

In our analysis, we made a few simplifying assumptions on (1.1), such as dis-
carding the evaporation rate b. Figure 9 (right) demonstrates numerically the effect
of increasing the evaporation rate with the initial condition consisting of two thirsty
and three frugal vegetation patches. As the evaporation increases and less water is
available, the number of plant clusters decreases until eventually species extinction is
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Fig. 9. Left and center: Space-time plot of u1 (blue) and u2 (red) as a function of time with
a as indicated and with \beta = 0.6, \varepsilon = 0.03,D = 1,L = 3. Initial conditions consist of two spots on
opposite sides of the domain. Left: self-replication of both types of plants, leading to coexistence.
Center: Self-replication is followed by a takeover of the entire domain by the red plant. Note that
time is plotted on a log scale. Right: Space-time plot of u1 (blue) and u2 (red) under the effect of
increasing evaporation. The initial condition consists of two thirsty spots and three frugal spots. The
vertical scale corresponds to the evaporation rate b, which is being ramped up from zero according
to the formula b = 0.001t. Here, the full model (1.1) is simulated with the following parameters:
Du = 0.052,Dv = 1, \mu = 1, d1 = 1.3, d2 = 1, c11u1 + c12u2 = u1, c21u1 + c22u2 = u2, a= 2,L= 3.

observed. As expected, the thirsty plants tend to be killed off before the frugal plants.
Studies on the classical Klausmeier model with evaporation term have been done pre-
viously. For example, the generalized Klausmeier--Gray--Scott model was considered
in [40, 41], which shows the original Klausmeier model, restricted to flat ground but
allowing the diffusion of biomass, is identical to the Gray--Scott model. It has been
shown in [34] that symmetric spike equilibrium solution in the Gray--Scott model in
the low feed rate regime has a saddle-node bifurcation point. So we conjecture that
the evaporation term in our system can affect the fold point of the N -spike equilibrium
solutions.

The behavior of the system is very different for even larger a, as shown in
Figure 10. In this case, the two plants self-organize into a propagating wave of veg-
etation. The red wave (corresponding to a more frugal plant) eventually takes over
the entire domain. Similar phenomenon can be observed in other competition kinetics
[42]. An open problem is to compute the propagation speed as a function of system
parameters.

Another interesting open problem is to consider general \tau . In this paper, we have
assumed \tau is small enough that \tau \partial tv can be discarded to leading order. For more
general cases where \tau is sufficiently large, a Hopf bifurcation can happen. This phe-
nomenon has been studied in singularly perturbed two-component reaction-diffusion
systems such as the Gierer--Meinhardt model and Gray--Scott model [43, 44]. In our
two-species system, two types of Hopf bifurcation can be observed numerically when
\tau is large. This is shown in Figure 11, in which Hopf bifurcation leading to oscillations
in the spike amplitudes and in the spike motion is observed depending on different
values of parameters.
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598 CHUNYI GAI AND THEODORE KOLOKOLNIKOV

Fig. 10. Space-time plot of u1 (blue) and u2 (red) as a function of time with \varepsilon = 0.1, \beta =
0.9, a= 50. Initial conditions consist of two spots on the opposite sides of the domain. Left: Initial
space-filling dynamics for t \in (0,15). Middle: Takeover of the domain by the red plant, t \in (0,500).
Snapshot of the propagating waves at three different times as indicated. The wave propagates at a
constant speed.

Fig. 11. Space-time plot of u1 (blue) and u2 (red) as a function of time with \tau and a as indicated
and with \beta = 0.5, \varepsilon = 0.03,D = 1,L = 3. Left: Hopf bifurcation in spike amplitude, leading to one
spike killed off. Right: Hopf bifurcation in spike motion of both u1 and u2 spike.

The model demonstrates how biodiversity can be very sensitive to precipitation
levels. It exhibits species coexistence in a ``Goldilocks"" region of precipitation rate
a \in (acoexistence,min, acoexistence,max). For high precipitation when a > acoexistence,max,
the frugal species ``pushes out"" the thirsty species in an invasion-wave-type dynamics.
For low precipitation a < acoexistence,min, the thirsty species dies out through direct
competition for water resources. This demonstrates the evidence of fragility of coex-
istence if the precipitation changes too much, e.g., as a consequence of climate change
[45, 15].
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The Klausmeier model is qualitative and phenomenological rather than quantita-
tive and does not incorporate explicitly the exact biological details of water/nutrient
uptake. Our goal was to use a sort of ``minimal"" model which nonetheless can exhibit
realistic behavior. Despite its simplicity, the model exhibits a very rich and wide
range of biologically viable scenarios, including coexistence for an intermediate range
of precipitation levels, as well as the domination of more frugal plants when water lev-
els are either too high or too low. The model suggests that for moderate water levels,
initial conditions play an important role in determining coexistence versus domination
(cf. Figure 4). In contrast, at high water levels, coexistence or domination is inde-
pendent of initial conditions (cf. Figure 9), which is similar to Lotka--Volterra-type
models [46].

Appendix A. In this appendix we derive nondimensionalization of system (1.1).
First we scale the variables as follows:

\^x=
x

x0
, \^t=

t

t0
, \^u1 =

u1

u0
, \^u2 =

u2

u0
, \^v=

v

v0
,

where x0, t0, u0, v0 are constant units that are to be determined. Plugging the nondi-
mensional variables into (1.1), we get

\^u1\^t =
t0
x2
0

Du\partial \^x\^x\^u1  - \mu t0\^u1 + d1c11u0v0t0\^u1

\biggl( 
\^u1 +

c12
c11

\^u2

\biggr) 
\^v,

(A.1)

\^u2\^t =
t0
x2
0

Du\partial \^x\^x\^u2  - \mu t0\^u2 + d2c22u0v0t0\^u2

\biggl( 
c21
c22

\^u1 + \^u2

\biggr) 
\^v,

\tau \^v\^t =
t0
x2
0

Dv\partial \^x\^x\^v+
t0
v0

a - bt0\^v - u2
0t0c11\^u1

\biggl( 
\^u1 +

c12
c11

\^u2

\biggr) 
\^v - u2

0t0c22\^u2

\biggl( 
c21
c22

\^u1 + \^u2

\biggr) 
\^v.

According to a few parameter estimates for Du in previous studies, in which Du

could range from 10 - 6m2/day [9, 25] to 10 - 3m2/day [10], here we consider the regime
that Du =\scrO (\varepsilon 2), in which \varepsilon \ll 1, and Dv =\scrO (1). This regime reflects the fact that
the spread of plants is much slower than the diffusion of water [9, 47]. We then choose
t0 and x0 such that \mu t0 = 1, and t0

x2
0
Du = \varepsilon 2. Then system (A.1) becomes the following

singularly perturbed reaction diffusion system:

\^u1\^t = \varepsilon 2\partial \^x\^x\^u1  - \^u1 +
d1c11u0v0

\mu 
\^u1

\biggl( 
\^u1 +

c12
c11

\^u2

\biggr) 
\^v,

(A.2)

\^u2\^t = \varepsilon 2\partial \^x\^x\^u2  - \^u2 +
d2c22u0v0

\mu 
\^u2

\biggl( 
c21
c22

\^u1 + \^u2

\biggr) 
\^v,

\tau \^v\^t =D\partial \^x\^x\^v+
1

\mu v0
a - b

\mu 
\^v - u2

0c11
\mu 

\^u1

\biggl( 
\^u1 +

c12
c11

\^u2

\biggr) 
\^v - u2

0c22
\mu 

\^u2

\biggl( 
c21
c22

\^u1 + \^u2

\biggr) 
\^v,

where D \equiv \varepsilon 2

Du
Dv = \scrO (1). Similar to other singularly perturbed reaction-diffusion

systems, (A.2) admits localized patterns. We scale the magnitude of the localized

spike patterns to \scrO (1) by taking u0 =\scrO ( 1\surd 
\varepsilon 
) and choosing u0, v0 such that

u2
0c11
\mu = 1

\varepsilon 

and d1c11u0v0
\mu = 1. This yields

u0 =

\sqrt{} 
\mu 

\varepsilon c11
, v0 =

\surd 
\varepsilon \mu c11

d1c11
,
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and system (A.2) becomes

\^u1\^t = \varepsilon 2\partial \^x\^x\^u1  - \^u1 + \^u1

\biggl( 
\^u1 +

c12
c11

\^u2

\biggr) 
\^v,

\^u2\^t = \varepsilon 2\partial \^x\^x\^u2  - \^u2 +
d2c22
d1c11

\^u2

\biggl( 
c21
c22

\^u1 + \^u2

\biggr) 
\^v,(A.3)

\tau \^v\^t =D\partial \^x\^x\^v+
d1c11\sqrt{} 
\varepsilon \mu 3c11

a - b

\mu 
\^v - \^u2

1\^v

\varepsilon 
 - c22

c11

\^u2
2\^v

\varepsilon 
 - c12 + c21

c11

\^u1\^u2\^v

\varepsilon 
.

In the end, we scale \^a = d1c11\surd 
\varepsilon \mu 3c11

a and \^b = b
\mu . Dropping the hats, we obtain system

(1.2) as shown in section 1.1.

Appendix B. In this appendix we prove the radius of thirsty patches in mixed
patterns is smaller than that of the spike in pure thirsty patterns.

Without loss of generality, we assume \beta < 1 so u1 is the thirsty species. We
denote the radii of the thirsty patches in mixed patterns as l1 and the radii of the
spikes in pure thirsty pattern as \~l1 (the proof is the same for the case \beta > 1).

First, we show that in mixed-spike patterns the radius of thirsty patches is smaller
than that of frugal patches, i.e., l1 < l2.

From (2.5), (2.7), we have the heights of the two types of spike:

(B.1) u1(xj) =
3

2v1
=

al1
2

,

(B.2) u2(xj) =
3

2v2
=

al2
2\beta 

,

where xj is the center of the u1- or u2-spike, depending on the spike locations of the
two types. It is observed from simulations that frugal spikes are higher than thirsty
spikes in the pattern (see Figure 3 for some examples). Therefore, al1

2 < al2
2\beta and it

follows that

(B.3) l2 >\beta l1.

Then, rewriting (3.2), we get

(B.4)
a

2D
(l1 + l2)(l1  - l2) =

3

al1l2
(\beta l1  - l2)< 0,

which yields l1 < l2.
Then for mixed patterns where k1 \geq 1, k2 \geq 1, we have

(B.5) L= k1l1 + k2l2 >k1l1 + k2l1 = (k1 + k2)l1 =Nl1,

which yields

(B.6) l1 <
L

N
=\~l1.

Therefore, the radius of thirsty patches in mixed patterns is smaller than that of the
spike in pure thirsty pattern. Moreover, since the height of each spike is proportional
to its radius, a smaller radius l1 implies a smaller patch size.
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