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We consider stationary Bloch waves in a Bose–Einstein condensate placed in a
periodic potential for varying strengths of inter-atomic interactions. Bifurcations
of the stationary states are known to occur in this context. These bifurcations
generate loops in the energy bands of the Bloch waves near the ends and the
center of the Brillouin zone. Using the method of Lyapunov–Schmidt reductions,
we show that these bifurcations are of the supercritical pitchfork type. We
also characterize the change in stability of the stationary states across the
bifurcation point. Analytical results are illustrated by numerical computations.

1. Introduction

Bloch waves arise naturally when describing a particle in a periodic potential.
Bloch’s Theorem states that solutions to the linear Schrödinger equations in a
periodic potential are given by quasi-periodic functions, which are now known
as the Bloch functions [6]. Recent applications of nonlinear Bloch waves are
known in photonic crystals and waveguide optics [16]. Periodic potentials
induced by optical lattices are used to control Bose–Einstein condensates of ultra
cold atomic gases [13]. Mathematical theory of Bloch functions and nonlinear
localized stationary states in periodic potentials is constructed in the book [11].

In the context of cigar-shaped Bose–Einstein condensation, we consider the
one-dimensional Gross–Pitaevskii equation as the mean-field model,

i
∂�

∂t
= −∂2�

∂x2
+ V (x)� + c|�|2�, (1)
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where �(x, t) : R × R → C is the wave function of the condensate (with |�|2
being a probability density of Bose atoms), V (x) : R → R is the trapping
potential, and c ∈ R is the strength of the inter-atomic interactions.

We take the potential V to be a 2π -periodic function, V (x + 2π ) =
V (x). This potential corresponds to an optical lattice used for trapping the
condensate. We deal both with the defocusing c > 0 and focusing c < 0 cases.

The main interest that draws our attention is the possibility of loops in the
energy bands associated with the nonlinear Bloch waves. This possibility was
first discovered by Wu and Niu (see their review in [17]) and later explored
numerically by Machholm, Pethick, and Smith [7]. The loops were discovered
in the defocusing case c > 0 for the lowest energy band near the end of the
Brillouin zone and for the second energy band near the center of the Brillouin
zone (see Figure 1 in [7]). For V (x) = cos (x), one can construct analytically
the exact solutions for antiperiodic Bloch waves associated with the lowest
energy band bifurcating at c = 1 to the interval c > 1 [1, 17].

More recently, loops in the energy bands for Bloch waves were discovered
in the context of atomic Bloch–Zener oscillations in an optical cavity [14, 15].
This problem is modeled by the system of a linear Schrödinger equations
for the atomic wave function and an evolution equation for the number of
photons in the cavity [14]. The stationary Bloch waves satisfy the Schrödinger
equations, where the nonlinear response is due to the coefficient in front of the
periodic potential V . In this context, loops in the energy bands for Bloch
waves bifurcate in the interior of the Brillouin zone and detach as new energy
bands, in a sharp contrast from the energy bands for Bloch waves in optically
trapped Bose–Einstein condensates.

The comparison between these two examples calls for systematic analysis
of the loop bifurcations in the energy bands of the Bloch waves in periodic
potentials. We study this phenomenon here, in the context of the Gross–Pitaevskii
equation (1).

Our main results and the organization of this article are as follows. Section 2
contains the description of the energy bands for Bloch waves. We prove that
the loops in the energy bands may only occur at the ends or the center of
the Brillouin zone. Bifurcations like the one considered in [15] cannot occur
within the Gross–Pitaevskii equation (1).

Section 3 presents asymptotic results on the energy bands for small values of
the parameter c. Continuations with respect to parameter c are also performed
numerically to illustrate existence of bifurcations of Bloch waves near the ends
and the center of the Brillouin zone. We also prove that the only possible
scenario of the relevant bifurcation at the lowest energy band is the appearance
of complex-valued Bloch waves in addition to the real-valued Bloch wave that
persists across the bifurcation point.

Section 4 contains the Lyapunov–Schmidt analysis of a general bifurcation
of the stationary Bloch wave. We derive the normal form for this bifurcation,
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which allows us to explain the appearance of the loop in the energy band. This
normal form is valid both for the lowest energy band as well as for the higher
energy bands assuming some constraints on the numerical coefficients.

The time-dependent normal form equation is derived in Section 5 to explain
the change in stability of the stationary Bloch waves with respect to the
time-dependent perturbations. For the lowest energy band, we prove that the
upper branch of the loop that contains the real-valued Bloch wave is unstable
with respect to the time-dependent perturbations, whereas the lower branches
of the loop that contain complex-valued Bloch waves are stable.

Section 6 discusses the loop bifurcations in the context of atomic Bloch
oscillations in optical cavities. Section 7 gives a summary of this work.

2. Energy bands for Bloch waves

The stationary states satisfy the time-independent Gross–Pitaevskii equation,

−ψ ′′(x) + V (x)ψ(x) + c|ψ(x)|2ψ(x) = μψ(x), x ∈ R, (2)

where μ is an eigenvalue. Physically μ is associated with the chemical potential
for the Bose–Einstein condensate. If we keep c as a free parameter, we should
add the normalization condition,

Q(ψ) = 1

2π

∫ π

−π

|ψ |2dx = 1. (3)

Alternatively, we can normalize c and use Q = Q(ψ) as a free parameter of
the stationary states. The latter formalism is used in [8, 19] to characterize
nonuniqueness of the Bloch waves and localized states in the periodic potentials.
To avoid multiplicity of nonlinear Bloch waves, we shall normalize Q(ψ) = 1
and use c as a free parameter in what follows.

The Bloch waves are quasi-periodic solutions of the stationary equation (2),

ψ(x) = eikxφ(x), φ(x + 2π ) = φ(x), x ∈ R, (4)

where k is the Bloch wave number. Therefore,

ψ(x + 2π ) = e2π ik+ikxφ(x + 2π ) = e2π ikψ(x). (5)

Due to the periodicity of the exponential term in (5) it is sufficient to consider k on
the interval [− 1

2 ,
1
2 ], called the Brillouin zone. The map [− 1

2 ,
1
2 ] � k �→ μ ∈ R

is called the energy band for the Bloch wave ψ satisfying (2) and (5). Both the
Bloch wave and the energy band are 1-periodic in k ∈ R, if they exist.

For k = 0, the Bloch wave is a 2π -periodic function, ψ(x + 2π ) = ψ(x).
For k = ± 1

2 , it is a 2π -antiperiodic function, ψ(x + 2π ) = −ψ(x). At either
k = 0 or k = ± 1

2 the function ψ can be taken to be purely real because the
stationary equation (2) admits a reduction to real-valued solutions and the
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boundary conditions in (5) are real valued. We can not generally take ψ purely
real for k �= {0, ± 1

2}, as the boundary conditions in (5) are not real-valued.
Existence of the Bloch waves in the form (4) for small c ∈ R follows from

the variational methods applied to the energy functional,

Eμ(ψ) = 1

2π

∫ π

−π

[
|ψ ′|2 + V |ψ |2 − μ|ψ |2 + 1

2
c|ψ |4

]
dx,

ψ = eikxφ, φ ∈ H 1
per(−π, π ).

(6)

Variation of Eμ in ψ yields the stationary equation (2), where μ is the Lagrange
multiplier of the variational problem subject to the normalization condition (3).

If c = 0, there exists a countable set of energy bands {μn(k)}n∈N0 , where
N0 := {0, 1, 2, 3, . . .} and n = 0 corresponds to the lowest energy band [4].
The lowest energy band achieves the minimum of Eμ under the constrained
Q(ψ) = 1. The higher energy bands correspond to critical points of Eμ, which
follows from the Courant’s minimax principle.

If V ∈ L∞ and μ is taken in between values in the set {μn(k)}n∈N0 for any
fixed k ∈ [− 1

2 ,
1
2 ], Theorem 3.4 in [9] states that a critical point of Eμ exists

for all c ∈ R. The lowest energy band exists for μ < μ0(k) if c < 0 and for
μ > μ0(k) if c > 0.

Let ψ be the family of Bloch waves of the stationary equation (2) for a
fixed energy band with k ∈ [− 1

2 ,
1
2 ]. Integrating by parts we find that,

E(k) := Eμ(φeikx) = − c

4π

∫ π

−π

|ψ |4dx, (7)

which yields,

μ(k) = 1

2π

∫ π

−π

[|ψ ′|2 + V |ψ |2 + c|ψ |4]dx, (8)

Let us define a new function,

F(k) := μ − c

4π

∫ π

−π

|ψ |4dx ≡ μ(k) + E(k), (9)

We will show that F(k) is monotonically increasing or decreasing for any
k ∈ (− 1

2 , 0) ∪ (0, 1
2 ). Because the same properties hold for the energy band

function μ(k) in the linear limit c = 0, these results show that F(k) can be
used as the nonlinear energy band function.

LEMMA 1. For a fixed c ∈ R, let ψ be a family of critical points of Eμ(ψ)
subject to Q(ψ) = 1 in the form of the Bloch wave (5) with φ ∈ H1

per(−π , π )

and k ∈ [− 1
2 ,

1
2 ]. Then, F(k) defined by (9) is a C1 function of k for all

k ∈ (− 1
2 , 0) ∪ (0, 1

2 )such that F ′(k) �= 0.
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Proof : Let ψ = eikxφ with φ ∈ H1
per(−π , π ) be a critical point of Eμ(ψ)

for some μ(k). The energy functional (6) yields the Euler–Lagrange equation,

−φ′′(x) − 2ikφ′(x) + (V (x) + k2 − μ(k) + c|φ(x)|2) φ(x) = 0. (10)

By the bootstrapping arguments, if φ ∈ H1
per(−π , π ) and V ∈ L∞(R), then

φ ∈ H2
per(−π , π ). By the Sobolev embedding of H 2

per(−π, π ) to C1
per(−π, π ),

we have φ ∈ C1
per(−π, π ).

The stationary equation (2) yields the first integral,

d

dx
(−ψ̄ψ ′ + ψψ̄ ′) = 0 ⇒ C0 = i(−ψ̄ψ ′ + ψψ̄ ′)

= i(−φ̄φ′ + φφ̄′) + 2k|φ|2 = const. (11)

We note that C0 �= 0 if k �= {0, ± 1
2} because if C0 = 0, then ψ and ψ̄ are

constant proportional to each other with the constant to be ±1 (for c �= 0).
However, the constraint ψ = ψ̄ is impossible, because ψ(2π ) = e2πikψ(0)
and even if ψ(0) ∈ R, then ψ(2π ) /∈ R if k �= {0, ± 1

2} (similarly, constraint
ψ = −ψ̄ is also impossible).

Continuity of φ ∈ H 2
per(R) and μ ∈ R with respect to parameter k for all

k ∈ (− 1
2 , 0) ∪ (0, 1

2 ) follows from the continuous dependence of solutions of the
differential equation (10) and the energy functional (8) from the parameter k,
thanks to the compact Sobolev embedding of H2

per(−π , π ) to L4
per(−π , π ). Now

we consider differentiability of φ and μ with respect k from the derivative
equation, (−∂2

x + V − μ
)
∂kψ = ψ∂kμ − 2c|ψ |2∂kψ − cψ2∂kψ̄. (12)

Multiplying this equation to ψ and integrating twice by parts, we obtain,

∂kμ

∫ π

−π

|ψ |2dx−c

∫ π

−π

|ψ |2(ψ̄∂kψ + ψ∂kψ̄)dx

= [(∂x ψ̄)(∂kψ) − ψ̄∂k∂xψ]|x=π
x=−π

= 2π [i(−φ̄φ′ + φφ̄′) + 2k|φ|2]|x=π = 2πC0,

(13)

where boundary conditions (5) and the first invariant (11) are used for the last
equality. Because C0 is continuous in k and nonzero for all k ∈ (− 1

2 , 0) ∪ (0, 1
2 ),

it follows from (13) that F(k) is continuously differentiable in k with F ′(k) �= 0
for all k ∈ (− 1

2 , 0) ∪ (0, 1
2 ). �

Because F(k) and μ(k) are C1 functions for all k ∈ (− 1
2 , 0) ∪ (0, 1

2 ), loops
and new branches of Bloch waves may only occur either at the end points
k = ± 1

2 or the center k = 0 of the Brillouin zone. At the end points k = ± 1
2 ,

μ′(k) is zero for c = 0 and remain zero for small values of c ∈ R, providing
smoothness of a global 1-periodic extension of μ(k) over k ∈ R. However,
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for some values of c ∈ R, μ′(k) may be nonzero at k = ± 1
2 , which would

indicate the loss of smoothness in the global 1-periodic extension of μ(k) over
k ∈ R and the possibility of other energy bands centered at k = ± 1

2 . These
are the loop bifurcations of the energy bands, which we are studying in this
paper. Additionally, if a periodic minimizer in a minimax variational principle
becomes degenerate, the loop in the energy band may bifurcate at the center
k = 0 of the Brillouin zone. We show numerically that this indeed happens for
the second energy band if c > 0.

3. Energy bands for small values of c

Because loop bifurcations occur at the end or center points of the Brillouin
zone, we consider the Bloch waves at k = 0 and k = 1

2 . In what follows, we
give details for the case k = 1

2 , whereas the case k = 0 is fully analogous.
When k = 1

2 , the corresponding Bloch wave ψ satisfying the stationary
Gross–Pitaevskii equation (2) is a 2π -antiperiodic function.

The linear analogue of the stationary Gross–Pitaevskii equation,

−ψ ′′(x) + V (x)ψ = μψ, ψ(x + 2π ) = −ψ(x), (14)

admits a countable set of eigenvalues {μn}n∈N0 , where N0 := (0, 1, 2, . . .), at
discrete energy levels, each with a corresponding wave function, ψn ∈ H2

a.p.,
where,

H2
a.p. := { f ∈ H 2([−π, π ], R) : f (−π ) = − f (π ), f ′(−π ) = − f ′(π )}.

(15)

We take each ψn to be real and normalized by ‖ψn‖L2 = 1 where,

‖ f ‖2
L2 := 〈 f, f 〉L2, 〈 f, g〉L2 := 1

2π

∫ π

−π

f (x)g(x)dx, (16)

and the factor 1
2π

is included for convenience of normalization. The following
theorem states that any linear Bloch wave can be uniquely continued as a
solution of the stationary Gross–Pitaevskii equation (2) for small c ∈ R.

THEOREM 1. Fix n ∈ N0 such that μm �= μn for all m ∈ N0\{n}. There
exists cn > 0 and D1, D2 > 0 such that for any c ∈ (−cn, cn), the stationary
Gross–Pitaevskii equation,

−ψ ′′ + V (x)ψ + cψ3 = μψ, ψ(x + 2π ) = −ψ(x), ‖ψ‖L2 = 1, (17)

admits a unique branch of Bloch waves satisfying,

|μ − μn| ≤ D1c, ‖ψ − ψn‖H 2 ≤ D2c.

We outline a standard method to prove the theorem in Section 3.1.
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Loop bifurcations of Bloch bands centered at k = 1
2 are determined by

the change in the number of negative eigenvalues of the linear Schrödinger
operators,

L+ := −∂2
x + V (x) + 3cψ2(x) − μ, (18)

L− := −∂2
x + V (x) + cψ2(x) − μ, (19)

where ψ is the antiperiodic Bloch wave of the stationary equation (17) that
corresponds to the nonlinear eigenvalue μ. Operator L+ can be obtained by
differentiating the stationary Gross–Pitaevskii equation (2) with respect to
real ψ . Differentiating (2) with respect to imaginary ψ yields operator L−.
Eigenvalues of L± for small c ∈ R are approximated in Section 3.2.

Numerical approximations in comparison with the asymptotic results are
given in Section 3.3.

3.1 Bloch waves for small c

Let us pick ψn ∈ H2
a.p. and μn satisfying the linear equation (14) for some

n ∈ N0. We assume that,

μm �= μn for all m ∈ N0\{n}, (20)

which means that the two adjacent spectral bands for the Bloch waves are
disjoint. It is clear that Ker(Ln) = span(ψn) where,

Ln := −∂2
x + V (x) − μn, (21)

is an unbounded operator from H2
a.p. to L2

a.p.. Because Ln is self-adjoint, its
kernel and range are orthogonal so,

Ran(Ln) = {
f ∈ L2

a.p. : 〈 f, ψn〉L2 = 0
}
. (22)

Therefore, it is natural to introduce the decomposition, L2 = {ψn} ⊕ Ran(Ln)
and define the projection operator, Pn : L2 → Ran(Ln). Standard methods based
on eigenfunction decompositions show that if the nonresonance condition (20)
is satisfied then,∥∥Pn L−1

n Pn

∥∥
H 2→H 2 ≤ sup

m∈N0\{n}

1

|μm − μn| =: N < ∞. (23)

We consider a solution ψ of the stationary equation (17) with nonlinear
eigenvalue μ and decompose,

μ = μn + δμ, ψ = aψn + δψ, a ∈ R, 〈ψn, δψ〉L2 = 0. (24)

Then, equation (17) is rewritten as,

Lnδψ = F ≡ δμ(aψn + δψ) − c(aψn + δψ)3. (25)
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Right-hand side term F must be in the range of Ln, thus it follows that,

〈δμ(aψn + δψ) − c(aψn + δψ)3, ψn〉L2 = 0

⇒ δμ = c

a
〈(aψn + δψ)3, ψn〉L2 .

(26)

On the other hand, the normalization of ψ and ψn gives,

1 = a2 + ‖δψ‖2
L2 ⇒ a =

√
1 − ‖δψ‖2

L2 . (27)

If we can prove that ‖δψ‖H 2 = O(c) then we have,

a = 1 + O(c2), δμ = c‖ψn‖4
L4 + O(c2), (28)

and the proof of Theorem 1 is complete.
We now turn our attention to δψ , which solves the fixed-point problem,

δψ =(
Pn L−1

n Pn

)F=(
Pn L−1

n Pn

)
(δμ(aψn + δψ)− c(aψn + δψ)3)≡A(δψ ; c).

(29)

The nonlinear operator A depends only on δψ ∈ H2
a.p. and c ∈ R since δμ

and a are uniquely determined by constraint (26) and normalization (27). The
following lemma guarantees a small solution of the fixed-point equation (29)
such that the condition ‖δψ‖H 2 = O(c) is satisfied.

LEMMA 2. There is cn > 0 and D > 0 such that for any c ∈ (−cn, cn),
the nonlinear operatorA(δψ ; c), as defined by (26), (27), and (29), has a
unique fixed point, δψ ∈ H2

a.p., in a neighborhood of 0 ∈ H2
a.p. satisfying

‖δψ‖H 2 ≤ Dc.

Proof : We will apply the Banach Fixed Point Theorem (see Section 1.6
in [20] for a precise statement) to the proof of existence and uniqueness of a
fixed point of A. We must show that A maps a closed neighborhood around
0 ∈ H2

a.p. into itself and that A is a contraction map. Take B̄ε ⊂ H2
a.p. with,

B̄ε := {
ψ ∈ H2

a.p. : ‖ψ‖H 2 ≤ ε
}
, (30)

a closed neighborhood around 0 ∈ H2
a.p.. Take δψ ∈ B̄ε and consider the norm

of A(δψ ; c) for small c. Note that ψn ∈H2
a.p. gives ‖ψn‖H 2 ≤ R for some R > 0.

We will use the Banach algebra property of H2: for any f , g ∈ H2, there is
K > 0 such that,

‖ f g‖H 2 ≤ K‖ f ‖H 2‖g‖H 2 . (31)
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Using (23) and (31) we have,

‖A(δψ ; c)‖H 2 = ‖Pn L−1
n Pn‖H 2→H 2‖δμ(aψn + δψ) − c(aψn + δψ)3‖H 2

≤ N (R|a||δμ| + |δμ|ε + cK 2(R3|a|3 + 3R2|a|2ε
+ 3R|a|ε2 + ε3)). (32)

Because |δμ| = O(c) from (26) if δψ ∈ B̄ε, there is a cn > 0 such that for all
c ∈ (− cn, cn), there is ε = ε(c) such that ‖A(δψ ; c)‖H 2 ≤ ε if ‖δψ‖H 2 ≤ ε.
Hence, A maps a closed ball in H2

a.p. into itself.
Now we show that A is a contraction map for small c. That is, we need to

show that there is cn > 0 such that for all c ∈ (−cn, cn) there is q = q(c) such
that q ∈ (0, 1) and,

‖A(δψ1; c) − A(δψ2; c)‖H 2 ≤ q‖δψ1 − δψ2‖H 2, (33)

where,

A(δψ1; c) − A(δψ2; c) =Pn L−1
n Pn

(
(δμ1a1 − δμ2a2)ψn + δμ1δψ1

− δμ2δψ2 − c
((

a3
1 − a3

2

)
ψ3

n + 3ψ2
n

(
a2

1δψ1 − a2
2δψ2

)
+ 3ψn

(
a1δψ

2
1 − a2δψ

2
2

) + (
δψ3

1 − δψ3
2

)))
. (34)

Lengthy but straightforward computations (see [3] for details) show that there
are (c, ε)-independent constants M0, M1, M2 > 0 such that for small c and
finite ε > 0 we have,

q := |c|N(
M0 + M1ε + M2ε

2
)
. (35)

It is clear that there exists cn > 0 such that q < 1 for all c ∈ (−cn, cn) and thus
A is a contraction mapping. Thus, by the Banach Fixed Point Theorem [20],
we have the existence of a unique fixed point, δψ ∈ H2

a.p., of A for sufficiently
small c.

It remains to estimate the magnitude of δψ for small c. Expansion of (26),
(27), and (29) gives,

δψ = c
(
Pn L−1

n Pn

)(‖ψn‖4
L4ψn − ψ3

n + O(‖δψ‖H 2 )
)
. (36)

If δψ is a unique fixed point of the fixed-point problem (29) for small c, then
(36) gives,

δψ = c
(
Pn L−1

n Pn

)(‖ψn‖4
L4ψn − ψ3

n

) + O(c2), (37)

so that there is D > 0 such that ‖δψ‖H 2 ≤ Dc. �
We refer to the unique continuation of the Bloch wave in Theorem 1 as the

stationary real branch. Note that the above argument applies equally well for
periodic boundary conditions in the stationary system (17), that is for, k = 0
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with ψ ∈ H2
p where,

H2
p := { f ∈ H 2([−π, π ], R) : f (−π ) = f (π ), f ′(−π ) = f ′(π )}. (38)

In fact, a unique continuation of Bloch waves in c can be proven for all
k ∈ [− 1

2 ,
1
2 ]. Of course the result of Theorem 1 only holds in a neighborhood

of small c. A further increase in c may lead to a change in the number of
solutions of the stationary equation (2).

3.2 Linearized operators for small c

If ψ is a Bloch wave satisfying the stationary equation (17) in Theorem 1,
then L−ψ = 0, where L− is a linear operator in (19). Because we are interested
in bifurcations of stationary solutions, we examine the eigenvalues of L± and
look for a change in the number of negative eigenvalues. Using the asymptotic
approximation in Theorem 1, we can approximate eigenvalues of L± for small c.

Let μ(c) denote a particular stationary real branch with the Bloch wave ψ

originating from the linear eigenmode ψn for some n ∈ N0. Using (28) we
obtain,

μ′(0) = lim
c→0

μ − μn

c
= ‖ψn‖4

L4 . (39)

Now consider linearized operators L±(c) and their eigenvalues along the
stationary real branch. Denote the eigenvalues of L±(c) by λ

(m)
± (c), m ∈ N0 and

their L2 normalized eigenfunctions ϕ
(m)
± . The Rayleigh quotient gives,

λ
(m)
± (c) = 〈

L±(c)ϕ(m)
± , ϕ

(m)
±

〉
L2 . (40)

Because L+(0) = L−(0) ≡ Ln = −∂2
x + V (x) − μn have eigenvalues λ

(m)
± (0) =

μm − μn with normalized eigenfunctions ψm we obtain,

(λ(m)
+ )′(0) = 3

〈
ψ2

n , ψ2
m

〉
L2 − ‖ψn‖4

L4,

(λ(m)
− )′(0) = 〈ψ2

n , ψ2
m〉L2 − ‖ψn‖4

L4 . (41)

We recall that L±(0) = Ln has a simple zero eigenvalue and n negative
eigenvalues. The rest of the purely discrete spectrum of L±(0) is strictly
positive. Since, (

λ
(n)
+

)′
(0) = 2‖ψn‖4

L4 > 0,
(
λ

(n)
−

)′
(0) = 0, (42)

operator L+(c) has n negative and no zero eigenvalues for small c > 0 and
(n + 1) negative and no zero eigenvalues for small c < 0, whereas operator L−
has n negative and one zero eigenvalue for small c �= 0 (recall that L−(c)ψ = 0
for any c ∈ R).

The above count holds for small values of c. If in addition, c > 0, the
following lemma states that the number of negative eigenvalues of L+(c)
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cannot exceed the number of negative eigenvalues of L−(c). This result is
rather abstract and holds for large positive values of c as well.

LEMMA 3. Assume that the spectrum of L−(c) has κ(c) negative eigenvalues
and a simple zero eigenvalue. If c > 0, the spectrum of L+(c) has at most κ(c)
nonpositive eigenvalues accounting their multiplicity.

Proof : It is clear from (18) and (19) that,

L+(c) = L−(c) + 2cψ2.

Note that since L+(c) and L−(c) are self-adjoint, their eigenfunctions form an
orthogonal basis for H2

a.p.. For the negative and zero eigenvalues of L−(c), we
write,

L−(c)um = νm(c)um, 0 ≤ m ≤ κ(c), (43)

where the ordering νκ(c)(c) ≤ νκ(c)−1(c) ≤ · · · ≤ ν0(c) = 0 includes eigenvalues
with multiplicity greater than one. Similarly, for L+(c), we write,

L+(c)wm = γm(c)wm, 1 ≤ m ≤ M, (44)

where, γ M (c) ≤ γ M−1(c) ≤ · · · ≤ γ 1(c) ≤ 0. We claim that M ≤ κ(c). Suppose
M > κ(c) and derive a contradiction. For f ∈ span{w1, . . . wM} we write,

f =
M∑

m=1

cmwm, (45)

for some coefficients and note that,

〈L+(c)f , f 〉L2 =
M∑

m=1

|cm |2γm(c) ≤ 0, (46)

because of the orthogonality of eigenfunctions {wm}M
m =1. Now let us write

{wm}M
m =1 as an orthogonal decomposition over eigenfunctions of L−(c),

wm =
κ(c)∑
l=1

am,lum + w̃m, w̃m ⊥ span{u1, . . . , uκ(c)}, (47)

with 〈L−(c)w̃m, w̃m〉L2 ≥ 0. Consider,

g =
M∑

m=1

bmwm + g̃ =
κ(c)∑
l=1

(
M∑

m=1

am,lbm

)
ul + g̃ +

M∑
m=1

bmw̃m, (48)
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where g̃ ⊥ span{u1, . . . , uκ(c)}. If g = 0, then the expansion (48) represents a
decomposition of 0 over eigenfunctions of L− so that,

g̃ = −
M∑

m=1

bmw̃m = −
M∑

m=1

bmwm, (49)

and,

M∑
m=1

am,lbm = 0, 1 ≤ l ≤ κ(c). (50)

If M > κ(c), then the linear system (50) is under-determined and there exists a
nonzero solution for {b1, . . . , bM}. Therefore, g̃ in (49) is a nonzero vector.
Since g̃ ∈ span{w1, . . . , wM} the quadratic form (46) gives,

〈L+(c)̃g, g̃〉L2 =
M∑

m=1

|bm |2γm(c) ≤ 0.

On the other hand, since g̃ ∈ span{w̃1, . . . , w̃M} ⊥ span{u1, . . . , uκ(c)} and
g̃ �= 0 we have 〈L−(c)̃g, g̃〉L2 ≥ 0 and,

〈L+(c)̃g, g̃〉L2 = 〈L−(c)̃g, g̃〉L2 + 2c〈ψ2, g̃2〉L2 > 0.

A contradiction shows that M ≤ κ(c). �

COROLLARY 1. Assume that κ(0) = 0. Because c > 0 increases, the first
eigenvalue that crosses zero may only occur in the operator L−(c).

Proof : If κ(0) = 0, then the spectrum of L+(c) is positive definite for
small c > 0. It will remain positive definite for all values of c > 0, for which
κ(c) = 0. However, once κ(c) jumps from 0 to 1, it means that the spectrum of
L−(c) acquired a negative eigenvalue by crossing the zero eigenvalue (which
always exists in the spectrum of L−(c)). �

Corollary 1 is applied to the lowest energy band, for which κ(c) = 0 holds
always for small values of c.

3.3 Numerical approximations of Bloch waves

In order to construct numerical approximations of the Bloch waves ψ

(for k = 0 and k = 1
2 ) we solve the second-order differential equation,

− φ′′(x) + V (x)φ ± φ3 = μφ, x ∈ [−π, π ], (51)

with continuous parameter μ. We solve the differential equation (51) using a
shooting method by taking advantage of the boundary conditions: φ(x + 2π ) =
−φ(x) for k = 1

2 or φ(x + 2π ) = φ(x) for k = 0. Once we have φ for a given value
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Figure 1. Numerical results for k = 1
2 , n = 0 (astrix) and asymptotic approximations (dashed

lines): (a) Dependence of μ versus c for the stationary real branch, (b) Wave function ψ close
to c = 0, (c) Eigenvalues of L−(c), and (d) Eigenvalues of L+(c). Note the change in sign of
the eigenvalue with m = 1 of L−(c) at c = 1.

of μ, we compute c and ψ in the stationary Gross–Pitaevskii equation (2) by,

ψ = 1√
N

φ, c = ±N , (52)

where N = ‖φ‖2
L2 . The different signs correspond to the positive and negative

values of c.
Once we have determined c and ψ we have operators L±(c) and can

numerically approximate their eigenvalues. In the figures that follow we use
V (x) = cos (x) as the potential of the stationary system (17). Note that in Figure 1
(c) the bifurcation at c = 1 is exactly the loop bifurcation mentioned in [17].

The most interesting aspect of Figures 1–6 are the values of c for which the
number of negative eigenvalues of L−(c) changes. This phenomenon is seen in
Figure 1 (at c = 1), Figure 3 (around c = 0.05), Figure 5 (around c = 0.4),
and Figure 6 (around c = −0.3).

No change in the number of negative eigenvalues is observed for operator
L+(c). The change in the number of negative eigenvalues of L−(c) leads to a
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Figure 2. Similar to Figure 1 but with k = 1
2 and n = 1.

bifurcation of the stationary Bloch waves. We analyse this bifurcation in the
next section.

4. Loop bifurcations of Bloch bands

Here, we consider only the case k = 1
2 for simplicity. We pick a stationary

real branch for some fixed n ∈ N0. Recall that for small c, operator L+(c)
is invertible and operator L−(c) has a one-dimensional kernel spanned by
ψ . We assume that L+(c) remains invertible for larger values of c but the
kernel of L−(c) becomes two-dimensional for a particular value of c = c∗.
Examples of this occur in Figure 1 and Figure 3 for k = 1

2 . We denote μ∗ :=
μn(c∗), ψ∗ := ψ and,

L∗
+ := −∂2

x + V (x) + 3c∗ψ2
∗ (x) − μ∗, (53)

L∗
− := −∂2

x + V (x) + c∗ψ2
∗ (x) − μ∗. (54)

Recall that L∗
−ψ∗ = 0. We then define the bifurcation at c = c∗ according to

the following two conditions,
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Figure 3. Similar to Figure 1 but with k = 1
2 and n = 2. Note the change in sign of the

eigenvalue with m = 3 of L−(c) at c ≈ 0.05.

(A1) L∗
+ is invertible

(A2) ∃ ϕ∗ ∈ H2
a.p. such that L∗

−ϕ∗ = 0 and 〈ϕ∗, ψ∗〉L2 = 0.

The following theorem describes the details of this bifurcation, which is
seen to be the pitchfork (symmetry-breaking) bifurcation.

THEOREM 2. Assume that (A1) and (A2) hold. Suppose that,

S0 ≡ 〈
ψ∗,

(
L∗

+
)−1

ψ∗
〉
L2 �= 0,

P0 ≡ −〈
ψ2

∗ , ϕ2
∗
〉
L2 + 2c∗

〈
ψ∗ϕ2

∗,
(
L∗

+
)−1

ψ3
∗
〉
L2

+ α0
(
1 − 2c∗

〈
ψ∗ϕ2

∗,
(
L∗

+
)−1

ψ∗
〉
L2

) �= 0,

Q0 ≡ c∗
(
2c∗

〈
ψ∗ϕ2

∗,
(
L∗

+
)−1

ϕ2
∗ψ∗

〉
L2 − ‖ϕ∗‖4

L4

)
+ β0

(
1 − 2c∗

〈
ψ∗ϕ2

∗,
(
L∗

+
)−1

ψ∗
〉
L2

) �= 0,

R0 ≡ 2
〈
ψ ′

∗, ϕ∗
〉
L2 �= 0,
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Figure 4. Similar to Figure 1 but with k = 0 and n = 0.

where,

α0 ≡
〈
ψ∗,

(
L∗

+
)−1

ψ3
∗
〉
L2〈

ψ∗,
(
L∗+

)−1
ψ∗

〉
L2

, β0 ≡ 2c∗
〈
ψ∗,

(
L∗

+
)−1

ϕ2
∗ψ∗

〉
L2 − 1

2
〈
ψ∗,

(
L∗+

)−1
ψ∗

〉
L2

.

If sign(P0 Q0) = −1, there exists ε0 > 0, δ > 0, and η > 0 such that the
stationary Gross–Pitaevskii equation (2) with c = c∗ + ε admits a unique
Bloch wave solution (5) for all ε ∈ (−ε0, 0] and |k − 1

2 | < δ and three Bloch
wave solutions (5) for all ε ∈ (0, ε0) and |k − 1

2 | < ηε3/2.

Remark 1. If sign(P0 Q0) = +1, the ε neighbourhoods are reversed in
Theorem 2. That is, the stationary Gross–Pitaevskii equation (2) admits a
unique Bloch wave solution (5) for ε ∈ [0, ε0) and three Bloch wave solutions
for ε ∈ (− ε0, 0).
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Figure 5. Similar to Figure 1 but with k = 0 and n = 1. Note the change in sign of the
eigenvalue with m = 2 of L−(c) at c ≈ 0.4.

4.1 Stationary normal form

In order to study loops in the Bloch energy band we must consider k slightly
perturbed from k = 1

2 and thus we take,

k = 1

2
+ p, (55)

for small p. If ψ is the Bloch wave (4) then we have,

ψ(x) = eikxφ(x) = eipxe
ix
2 φ(x) ≡ eipxψ̃(x), (56)

where φ(x + 2π ) = φ(x) and ψ̃(x + 2π ) = −ψ̃(x). As a result, we can
reformulate the stationary equation (2) for the Bloch wave (56) in the form,

−ψ ′′ + V (x)ψ + cψ3 = (μ − p2)ψ + 2i pψ ′,

ψ(x + 2π ) = −ψ(x), ‖ψ‖L2 = 1,
(57)

where the tilde sign is dropped for convenience.
Now we consider a neighbourhood of the bifurcation point and define,

c = c∗ + ε, μ = μ∗ + M + p2, (58)
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Figure 6. Similar to Figure 1 but with k = 0 and n = 2. Note the change in sign of the
eigenvalue with m = 1 of L−(c) at c ≈ −0.3.

where ε and M are small parameters. Parameters c and μ (and thus ε and M)
are related along the stationary real branch that corresponds to p = 0. Let us
decompose ψ(x) into,

ψ(x) = ψ∗(x) + iaϕ∗(x) + u(x) + iW (x), 〈W, ϕ∗〉L2 = 0, (59)

with u, W ∈ H2
a.p., and a ∈ R. If we normalize ‖ψ∗‖L2 = ‖ϕ∗‖L2 = 1, then

the normalization condition ‖ψ‖L2 = 1 gives,

0 = 2〈ψ∗, u〉L2 + ‖u‖2
L2 + a2 + ‖W‖2

L2 . (60)

Operator L∗
− has a two-dimensional kernel, Ker(L∗

−) = {ψ∗, ϕ∗}. This
motivates us to make the following decomposition, L2 = {ψ∗, ϕ∗} ⊕ Ran(L∗

−)
where,

Ran(L∗
−) = { f ∈ L2 : 〈 f, ψ∗〉L2 = 〈 f, ϕ∗〉L2 = 0}. (61)

We again introduce the projection operator P− : L2 → Ran(L∗
−) and state from

standard methods that there exists N± > 0 such that,

‖P−(L∗
−)−1 P−‖H 2→H 2 ≤ N−, ‖(L∗

+)−1‖H 2→H 2 ≤ N+.
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Substituting (59) into (57) and equating the real and imaginary parts yields,

(L∗
+ + 3εψ2

∗ − M)u = H+ + N+(u, W ) + K+(W ; p), (62)

(L∗
− + εψ2

∗ − M)W = H− + N−(u, W ) + K−(u; p), (63)

where,

H+ := Mψ∗ − εψ3
∗ ,

N+ :=−(ε + c∗)((3u2 + (aϕ∗ + W )2)ψ∗ + (u2 + (aϕ∗ + W )2)u),
K+ :=−2p(aϕ′

∗ + W ′),
H− := Maϕ∗ − εaψ2

∗ϕ∗,
N− :=−(ε + c∗)(2ψ∗u + u2 + (aϕ∗ + W )2)(aϕ∗ + W ),
K− := 2p(ψ ′

∗ + u′).

A further examination of u and W is in order. If each function ψ∗, ϕ∗, u, and
W have definite parity, then H+, N+, and K+ have the same parity as ψ∗, u,
W ′, and ϕ′

∗ where as H−, N−, and K− have the same parity as ϕ∗, W , u′, and
ψ ′

∗. In addition, L± preserves parity. Hence, a unique solution for u, if it
exists, must have the same parity as ψ∗, ϕ′

∗, and W ′. Similarly, if a unique
solution for W exists then it must have the same parity as ϕ∗, ψ ′

∗, and u′. Note
that ψ∗ and ϕ∗ have opposite parities, which suggests that u and W should
continue to have the same parity as ψ∗ and ϕ∗, respectively.

To obtain the normal form for pitchfork bifurcation, we now expand u as
following:

u = Mu1 + εu2 + a2u3 + apu4 + U, (64)

where,

u1 := (L∗
+)−1ψ∗, u2 := −(L∗

+)−1ψ3
∗ ,

u3 := −c∗(L∗
+)−1ϕ2

∗ψ∗, u4 := −2(L∗
+)−1ϕ′

∗.

The normalization condition (60) is further expanded as,

0 = 2M〈ψ∗, u1〉L2 + 2ε〈ψ∗, u2〉L2 + 2a2〈ψ∗, u3〉L2 + a2

+ 2ap〈ψ∗, u4〉L2 + O(‖U‖L2, ‖W‖2
L2

)
.

(65)

Assuming that 〈ψ∗, u1〉L2 = 〈ψ∗, (L∗
+)−1ψ∗〉L2 ≡ S0 �= 0, then there is a unique

solution of the expansion (65) for M given by,

M = α0ε + β0a2 + γ0ap + O(‖U‖L2, ‖W‖2
L2

)
, (66)

where,

α0 := −〈ψ∗, u2〉L2

〈ψ∗, u1〉L2

, β0 := −1 + 2〈ψ∗, u3〉L2

2〈ψ∗, u1〉L2

, γ0 := −〈ψ∗, u4〉L2

〈ψ∗, u1〉L2

.
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We see later that the O(ap) term is small enough to ignore. Using the
nearly-identity transformation (64), we rewrite equation (62) in the following
way,

U= (L∗
+)−1(N+ + c∗a2ϕ2

∗ψ∗ + Mu − 3εψ2
∗u − 2pW ′) ≡ A+(U ; W, ε, a, p).

(67)

Note that M = M(ε, a2, ap, ‖U‖L2, ‖W‖2
L2 ) follows from the expansion (66).

The following lemma determines solutions of the fixed-point equation (67) for
some given (W , ε, a, p).

LEMMA 4. There exist ε0 > 0, p0 > 0, a0 > 0, δ0 > 0, and D > 0
such that for all |ε| < ε0, |p| < p0, |a| < a0, and ‖W‖H 2 < δ, the
nonlinear operatorA+(U ; W, ε, a, p) : H2

a.p. → H2
a.p.has a unique fixed point

in a neighbourhood of 0 ∈ H2
a.p. satisfying,

‖U‖H 2 ≤ D
(
ε2 + a4 + a2 p2 + |a|‖W‖H 2

)
. (68)

Proof : Again, we appeal to the Banach Fixed Point Theorem [20] by
considering a neighbourhood of 0 ∈ H2

a.p.,

B̄r := {
U ∈ H2

a.p. : ‖U‖H 2 ≤ r
}
. (69)

One can show, similarly to the proof of Lemma 2, that if (W, ε, a, p)
∈ H2

a.p. × R × R × R are small then A+ maps B̄r into itself and that A+ is a
contraction mapping. �

Now we consider equation (63) for W and after u is eliminated by
expansion (64) with the bound (68). The corresponding equation is written as,

L∗
−W = (M − εψ2

∗ )W + H− + N− + K− ≡ G(W ; ε, a, p). (70)

To have G ∈ Ran(L∗
−) we set the constraints,

〈G, ϕ∗〉L2 = 0, 〈G, ψ∗〉L2 = 0, (71)

since {ϕ∗, ψ∗} = Ker(L∗
−). Constraint 〈G, ψ∗〉L2 = 0 is satisfied trivially because

ψ∗ and G have opposite parities. By expanding constraint 〈G, ϕ∗〉L2 = 0 we
obtain,

0 = Ma
(
1 − 2c∗

〈
ψ∗ϕ2

∗, u1
〉
L2

) − c∗a3
(
2
〈
ψ∗ϕ2

∗, u3
〉
L2 + ‖ϕ∗‖4

L4

)
− εa

(〈
ψ2

∗ , ϕ2
∗
〈
L2 + 2c∗

〈
ψ∗ϕ2

∗, u2
〉
L2

) + 2p〈ψ ′
∗, ϕ∗〉L2

+ O(ε2a, a5, p2a, pε, a‖U‖L2, ε‖W‖L2 ), (72)

where ‖U‖L2 is controlled by (68) and M is controlled by (66). As a result, we
obtain a relationship between ε, a, p, and W :

εa P0 + a3 Q0 + pR0 + O(ε2a, a5, ε‖W‖L2 ) = 0, (73)
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with,

P0 :=−〈
ψ2

∗ , ϕ2
∗
〉
L2 − 2c∗

〈
ψ∗ϕ2

∗, u2
〉
L2 + α0

(
1 − 2c∗

〈
ψ∗ϕ2

∗, u1
〉
L2

)
,

Q0 :=−c∗
(
2
〈
ψ∗ϕ2

∗, u3
〉
L2 + ‖ϕ∗‖4

L4

) + β0
(
1 − 2c∗

〈
ψ∗ϕ2

∗, u1
〉
L2

)
,

R0 := 2
〈
ψ ′

∗, ϕ∗
〉
L2 .

We say that the expansion (73) is the normal form for the pitchfork bifurcation
at c = c∗. Note that equation (73) does not provide a unique solution for a.
If p is as small as the other terms in (73), then |p| = O(a3) = O(aε) and
hence |ap| = O(a4) is negligible in the expansion (66). Assuming that R0 �= 0,
we can solve equation (73) uniquely for p and eliminate p from further
computations.

Now we rewrite equation (70) as the fixed-point equation,

W = (P−(L∗
−)−1 P−)G ≡ A−(W ; ε, a), (74)

where p is controlled by the expansion (73). The following lemma determines
solutions of the fixed-point equation (74) for some given (ε, a).

LEMMA 5. There exist ε0 > 0, a0 > 0, and D > 0, such that for all
|ε| < ε0 and |a| < a0, the nonlinear operator A−(W ; ε, a) : H2

a.p. → H2
a.p.

has a unique fixed point in a neighbourhood 0 ∈ H2
a.p. satisfying,

‖W‖H 2 ≤ D(|εa| + |a|3). (75)

Proof : The proof is similar to the proofs of Lemma 2 and Lemma 4. �

We are now equipped to prove Theorem 2. Expansion (66) tells us that
the number of branches for μ, as in (58), will depend on the number of
admissible values for a in the normal form (73). For p = 0, the assumption of
sign(P0 Q0) = −1 implies that equation (73) admits only one solution a = 0 if
ε ≤ 0 and three solutions a = 0 and a = ±√−P0/Q0ε

1/2 + O(ε3/2) for ε > 0.
Now consider p �= 0 but small. Note that the p2 term in (58) is negligible

since |p| = O(a3). For a small ε, the discriminant of the perturbed cubic
equation (73) is given by,

�(p, ε) := −4Q0(εP0)3 − 27(Q0 pP0)2 + O(ε4). (76)

Because sign(P0 Q0) = −1, we have � < 0 for small ε ≤ 0. This is the
condition required for the normal form (73) to admit one (real) solution in a.
For small ε > 0, we define p = p0(ε) from the zero of �(p, ε),

p0(ε) :=
√

−4P0

27Q0
ε3/2 + O(ε5/2). (77)
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For any |p| < p0(ε) and small ε > 0, the normal form (73) admits three
solutions for a. These solutions correspond to three different Bloch waves.
The proof of Theorem 2 appears to be complete.

We remark that the arguments in the proof of Theorem 2 could be repeated
around k = 0 simply by changing the boundary condition in the stationary
system (57) to ψ(x + 2π ) = ψ(x) and working with ψ ∈ H2

p. Such a
configuration occurs on Figure 5, which satisfies the conditions for bifurcation
of the stationary real branch for c∗ > 0.

As for c∗ < 0 as in the configuration on Figure 6, the analysis can be repeated
as in Theorem 2 with c = c∗ + ε and μ = μ∗ + M so that a loop in the Bloch
band will appear when ε < 0 but now under the assumption sign(P0 Q0) = +1.

The side of ε, either ε > 0 or ε < 0, for which we have one or three Bloch
wave solutions near k = 0 or k = 1

2 depends on the sign of P0Q0. We evaluate
this sign numerically and do in fact see the correct orientation of the solution
branches.

Before numerical computations, we note that the sign of P0 is determined
by the motion of the eigenvalue of L−(c) that crosses zero at c = c∗.

LEMMA 6. Let P0 be defined by (73) and λ
(n)
− (c) be the nth eigenvalue of L−

such that λ
(n)
− (c∗) = 0 and the corresponding eigenfunction at c = c∗ is ϕ∗. Then,

λ
(n)′
− (c∗) = −P0. (78)

Proof : We set p = 0 and a = 0 in the previous computations, in particular
we set,

c = c∗ + ε, μ = μ∗ + M, (79)

and,

ψ = ψ∗ + Mu1 + εu2 + O(ε2 + M2), (80)

with u1 and u2 defined by (64). Substituting (80) to the operator L−(c) yields,

L−(c) = L∗
− + εψ2

∗ + 2c∗(ψ∗Mu1 + ψ∗εu2) − M + O(ε2 + M2). (81)

The Rayleigh quotient (40) now gives us,

λ
(n)
− (c) = 〈

L−(c)ϕ(n)
− , ϕ

(n)
−

〉
L2

= ε
〈
ψ2

∗ , ϕ2
∗
〉
L2 + 2c∗M

〈
ψ∗ϕ2

∗, u1
〉
L2 − M

+ 2c∗ε
〈
ψ∗ϕ2

∗, u2
〉
L2 + O(ε2 + M2),
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Figure 7. The dependence of a versus ε for n = 0 and two values of p = k − 1
2 . When p =

0, a pitchfork bifurcation is observed. When p > 0, the symmetry is broken and the unfolded
pitchfork bifurcation is observed.

once we note that L∗
−ϕ∗ = 0. If M = α0ε + O(ε2) then,

λ
(n)′
− (c∗) = 〈

ψ2
∗ , ϕ2

∗
〉
L2 + α0

(
2c∗

〈
ψ∗ϕ2

∗, u1
〉
L2 − 1

)
+ 2c∗

〈
ψ∗ϕ2

∗, u2
〉
L2 = −P0,

(82)

which is the desired result. �

COROLLARY 2. If λ
(n)
− ′(c∗) < 0, that is, the eigenvalue λ

(n)
− (c) crosses 0

from positive to negative values as c increases, then P0 > 0.
If Corollary 2 is applied, condition sign(P0 Q0) = −1 of Theorem 2 is

satisfied if Q0 < 0.

4.2 Examples of loop bifurcations

We now illustrate the results of Theorem 2 using the simplest examples.

4.2.1. Example with k = 1
2 , n = 0 and c∗ > 0 (Figure 1). If V (x) = cos (x),

then there exists an analytical solution for the bifurcation [17] with c∗ = 1,
μ∗ = 5

4 ,

ψ∗(x) =
√

2 sin
( x

2

)
, ϕ∗(x) =

√
2 cos

( x

2

)
. (83)

We evaluate coefficients S0, P0, Q0, R0 numerically,

S0 ≈ 0.3647, P0 ≈ 0.7419, Q0 ≈ −1.4838, R0 = −1.

We can now solve the normal form (73) for a in terms of ε for a fixed value
of p. A plot with p = 0 and small p > 0 is shown in Figure 7. Once we solve for
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Figure 8. The dependence of μ versus c for n = 0 and two values of p = k − 1
2 . For p = 0,

we see the stationary real branch (green), as seen numerically in Figure 1. The new (complex)
solution is observed below the real branch for c > c∗ = 1. The red curve gives solutions
branches for p �= 0. One solution branch is seen for c < c+(p), where c+(p) > c∗. Three
solution branches are observed for c > c+(p) > c∗.
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Figure 9. The dependence of μ versus k for n = 0 and three values of c = c∗ + ε. The
transition of the Bloch band through the bifurcation is seen. For c < c∗, the curve is smooth. At
c = c∗, a cusp point forms. Above the bifurcation value c > c∗, a loop forms in the energy band.

a in terms of ε we can solve for M in terms of ε in (66). Using (58), we plot
solution branches on the (c, μ) diagram in Figure 8. Because we have found
the relationship between M and ε we can now solve for M as a function of p in
(73) and so μ as a function of k from (58) and (55). In this way Figure 9
shows the Bloch bands around k = 1

2 for values of c close to c∗ (small ε).
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Let us define,

c+(p) = c∗ + ε+(p), (84)

where, according to (77),

ε+(p) = 3

√
−27Q0

4P0
p2/3 + O(p4/3). (85)

For small p and c > c+(p), three solution branches exist according to
Theorem 2.

In Figure 7, we see clearly the pitchfork bifurcation of the stationary real
branch. Parameter a here represents the magnitude of the imaginary component
of ψ . For p = 0, red in Figure 7, and ε < 0 we see the only solution has a = 0
and so is purely real. For ε > 0, we see the persistence of the real solution (a =
0) and the appearance of two new solution branches with a �= 0. However, the
values of a are equal in magnitude and so they represent complex-conjugate
solutions with the same eigenvalue, μ. For p �= 0, solutions cannot be purely
real. One solution branch exists for ε < ε+(p) and three solution branches
exist for ε > ε+(p).

In Figure 8 a similar behavior is observed. For p = 0, the stationary real
branch persists for c > c∗ and the new (complex) branch bifurcates below the
real branch for c > c∗. For p �= 0, there is one solution branch for c < c+(p)
and three solution branches for c > c+(p).

Now on to Figure 9. With c < c∗ we have a single solution for each k close
to k = 1

2 . At c = c∗ the band forms a cusp at k = 1
2 after which, c > c∗, we see

the appearance of a loop. To show that k = 1
2 is a cusp point for the band at

c = c∗ (ε = 0), we note from (58), (66), and (73) that,

dμ

dk

∣∣∣∣
k= 1

2

= d M

dp

∣∣∣∣
p=0

= 2β0a
da

dp

∣∣∣∣
p=0

= 2β0

3

(
R0

Q0

) 2
3 1

p
1
3

∣∣∣∣
p=0

= ∞. (86)

The solution at the top of the loop on Figure 9 corresponds to the real branch.
The complex-conjugate solutions are located at the bottom of the loop, where
the loop intersects itself. The degeneracy stems from the two solutions having
the same magnitude of a in Figure 7.

4.2.2. Example with k = 0, n = 1, and c∗ > 0 (Figure 5). For this
configuration, there is no closed form solution for c∗, μ∗, ψ∗, or ϕ∗. We must
therefore approximate these values and functions numerically. We implement a
root finding scheme on the third eigenvalue of L− (m = 2 in Figure 5) to find
the value c = c∗, where this eigenvalue crosses zero. Numerically we compute
c∗ ≈ 0.3942 and μ∗ ≈ 1.5154. Then, ψ∗ and ϕ∗ are given as the eigenfunctions
of the two zero eigenvalues of L− at c = c∗. Once we approximate ψ∗ and ϕ∗
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Figure 10. The dependence of a versus ε for n = 2 and two values of p = k. Behavior is
similar to Figure 7 but the orientation is reversed.

numerically we can compute the normal form coefficients,

S0 ≈ 0.8602, P0 ≈ 0.8996, Q0 ≈ −0.7871, R0 ≈ −1.7567.

As a result, we obtain sign(P0 Q0) = −1 as desired.
The bifurcation diagram, the solution branches around the bifurcation point

c = c∗, and the Bloch bands are qualitatively similar to Figures 7–9.

4.2.3. Example with k = 0, n = 2, and c∗ < 0 (Figure 6). For this
configuration, we compute numerically, c∗ ≈ −0.3253 and μ∗ ≈ 0.7521. When
the values of c are reduced, it is the second eigenvalue of L− that crosses zero
(m = 1 in Figure 6). Normal form coefficients are found to be,

S0 ≈ −0.8685, P0 ≈ 1.3158, Q0 ≈ 0.7829, R0 ≈ 1.8295.

We obtain sign(P0 Q0) = +1, which gives three solution branches for ε < 0 or
c < c∗ < 0. Figures 10, 11, and 12 characterize the relevant bifurcation
similar to Figures 7, 8, and 12. The only difference is that the loop appears
upside down in the case c∗ < 0.

5. Stability of Bloch waves at the lowest energy band

When a pitchfork (symmetry-breaking) bifurcation occurs, it is important
to classify stability of different branches of stationary solutions. We study
stability of the three branches in the loop using the time-dependent analogue
of the Lyapunov–Schmidt reduction method. In particular, we will derive the
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Figure 11. The dependence of μ versus c for n = 2 and two values of p = k. Behaviour is
similar to Figure 8 but the orientation is reversed.

−4 −2 0 2 4

x 10
−3

0.72

0.74

0.76

0.78

k

μ

k vs. μ

ε=0.01
ε=0
ε=−0.01

Figure 12. The dependence of μ versus k for n = 2 and three values of c = c∗ + ε. For
c > c∗, the curve is smooth. At the bifurcation value c = c∗, a cusp forms. When c < c∗, a
loop forms in the energy band.

time-dependent normal form for the pitchfork bifurcation in Section 5.1.
Details of the Lyapunov–Schmidt reduction method in a similar context of the
pitchfork bifurcation of stationary localized states in double-well potentials
can be found in [5, 12].

Section 5.2 reports a rigorous result on the stability of the stationary Bloch
waves associated with the lowest energy band. Section 5.3 confirms the results
with direct numerical simulations of the Gross–Pitaevskii equation (1).
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5.1. Time-dependent normal form

We set again c = c∗ + ε and k = 1
2 + p, for small ε and p. A solution of the

Gross–Pitaevskii equation (1) is now decomposed as follows:

�(x, t) = e−iμ∗t−i
∫ t

0 M(τ )dτ (ψ∗(x) + ia(t) ϕ∗(x) + u(x, t) + iW (x, t)).
(87)

Decomposition into the real and imaginary parts gives the evolution equations
for u and W ,

Wt + (L∗
+ + 3εψ2

∗ − M)u = −ȧϕ∗ + H+ + N+(u, W ) + K+(W ; p), (88)

−ut + (L∗
− + εψ2

∗ − M)W= H− + N−(u, W ) + K−(u; p), (89)

where H±, N±, and K± are defined below system (62)–(63). We decompose u
similarly to the stationary decomposition (64) but with one additional term,

u = Mu1 + εu2 + a2u3 + apu4 + ȧu5 + U, (90)

where,

u5 := −(L∗
+)−1ϕ∗.

The normalization condition, ‖�(·, t)‖L2 = 1, now reads,

0=2M〈ψ∗, u1〉L2 + 2ε〈ψ∗, u2〉L2 + 2a2〈ψ∗, u3〉L2

+ a2 + 2ap〈ψ∗, u4〉L2 + O (‖U‖L2, ‖W‖2
L2

)
, (91)

where 〈ψ∗, u5〉L2 = −〈ψ∗, (L∗
+)−1ϕ∗〉L2 = 0, thanks to the opposite parity of

ψ∗ and ϕ∗. The normalization condition (91) gives the same expression for M
as in (66),

M = α0ε + β0a2 + O(|ap|, ‖U‖L2, ‖W‖2
L2

)
, (92)

but a and M are now time-dependent. Equation (89) for W now reads,

L∗
−W = G(ε, a, p, W ) + Ṁu1 + 2aȧu3 + ȧ pu4 + äu5 + Ut ≡ E, (93)

where G is as defined in (70). In order to have E ∈ Ran(L∗
−) we require,

d

dt
〈ψ∗, u〉L2= −〈ψ∗,G〉L2, (94)

d

dt
〈ϕ∗, u〉L2= −〈ϕ∗,G〉L2 . (95)

The first constraint (94) is already satisfied because the normalization condition,
‖�(·, t)‖L2 = 1. The second constraint (95) gives,

ä〈ϕ∗, u5〉L2 + 〈ϕ∗,G〉L2 = − d

dt
〈ϕ∗, U 〉L2, (96)
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Figure 13. Phase portraits for p = 0. (a) ε < 0: one equilibrium; center. (b) ε > 0: three
equilibria; two centers and one saddle.

where we have used that 〈ϕ∗, u1〉L2 = 〈ϕ∗, u3〉L2 = 〈ϕ∗, u4〉L2 = 0. Expanding
at the highest order yields the time-dependent normal form equation,

äN0 + εa P0 + a3 Q0 + pR0 + O(ε2a, a5, a‖U‖L2, ε‖W‖L2, ‖Ut‖L2 ) = 0,
(97)

where P0, Q0, and R0 are as in the stationary normal form (73) and,

N0 := 〈ϕ∗, u5〉L2 = −〈
ϕ∗, (L∗

+)−1ϕ∗
〉
L2 .

The justification of the time-dependent normal form (97) hinges on the
smallness of a‖U‖L2 , ε‖W‖L2 , and ‖Ut‖L2 , the proof of which is similar to
the analysis in [12].

Phase portraits for the truncated normal form equation (97) can be obtained
by plotting the level curves of the energy equation,

E = ȧ2 N0

2
+ εa2 P0

2
+ a4 Q0

4
+ paR0, (98)

for various values of E. Note that N0 < 0 if (L∗
+)−1 is positive definite (as for

the lowest energy band, n = 0). Indeed, for the example with n = 0, k = 1
2 ,

and c∗ > 0 (Section 4.2.1) we find the numerical value N0 ≈ −1.3480.
Phase portraits for p = 0 are seen in Figure 13. If ε < 0, we see that

the only equilibrium point at (0, 0) is a stable center point. If ε > 0, three
equilibrium points are present. The solution with a = 0 is a saddle point and
therefore unstable. The two other solutions are centers and so stable. Figure 14
shows phase portraits for small p �= 0. If p �= 0, we see similar dynamics even
though the symmetry of the problem is broken.

Figures 13 and 14 illustrate a typical behavior of a supercritical pitchfork
bifurcation. The stationary real branch is stable before the bifurcation but loses
its stability after the bifurcation as the stable complex-conjugate solutions
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Figure 14. Phase portraits for p �= 0. (a) ε < 0: one equilibrium; center. (b) ε > 0: three
equilibria; two centers and one saddle.

appear. Away from k = 1
2 , the single branch which exists for c < c∗ is stable

and remains stable for c > c∗. Of the two new branches that appear for c > c∗,
as a result of the saddle-node bifurcation, one is stable and the other is
unstable. In Figure 7 the branch with the smallest |a| is the unstable branch.
This corresponds to the branch in Figure 8 with the largest value for μ. So in
Figure 9 the top of the loop is unstable while the bottom of the loop and
branch leading up to the loop are stable.

For the example with n = 1, k = 0, and c∗ > 0 (Section 4.2.2), we numerically
compute N0 ≈ −2.4725 < 0. Hence, phase portraits for this configuration will
be qualitatively the same as Figures 13 and 14 and so the stability of the
stationary branches will be identical to the case when n = 0, k = 1

2 , and c∗ > 0.
For the example with n = 2, k = 0, and c∗ < 0 (Section 4.2.3), we find

numerically N0 ≈ 2.5149. The reversed signs of N0 > 0 and sign(P0 Q0) = +1
gives behavior similar to Figures 13 and 14. The exchange of stability between
the solution branches therefore remains the same.

5.2 Spectral stability of the lowest energy band

We prove rigorously that the stationary real branch at k = 1
2 is spectrally stable

up to the bifurcation point c < c∗ and becomes unstable for c > c∗ under the
assumption that the second eigenvalue of operator L−(c) crosses zero from
positive to negative values at c = c∗. This assumption is justified for the lowest
energy band (Figure 1). Recall that the first eigenvalue of L−(c) is located at 0
for any c ∈ R.

Spectral stability of the real stationary branch is determined by the
eigenvalues of the linearized system,

L+(c)U = −λW, L−(c)W = λU, (99)
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where operators L±(c) are given by (18)–(19), and (U, W ) ∈ H2
a.p. × H2

a.p.. If
there is an eigenvalue with Re(λ) > 0, the stationary real solution ψ ∈ H2

a.p. is
unstable with respect to antiperiodic perturbations (U , W ). Otherwise, it is
spectrally stable. The following lemma clarifies the stability of the stationary
real branch at the lowest energy band.

LEMMA 7. Assume that the second eigenvalue of operator L−(c) at the
stationary real branch is positive for c < c∗ and negative for c > c∗, whereas
the first eigenvalue of L+(c) is negative for c < 0 and positive for c > 0. Then,
the stationary real branch is stable for c < c∗ and unstable for c > c∗.

Proof : Since L+(c) is positive for any c > 0 by the assumption, we can
rewrite the eigenvalue problem (99) as the generalized eigenvalue problem [2,
10],

L−(c)W = γ L−1
+ (c)W, γ = −λ2. (100)

If c ∈ (0, c∗), then operator L−(c) is nonnegative and γ ≥ 0 (λ ∈ iR) for
any eigenvalue of the generalized eigenvalue problem (100). In this case, the
stationary real solution is spectrally stable.

If c > c∗, operator L−(c) admits exactly one negative eigenvalue. By
Sylvester’s Inertia Law for linear operators [10], there is one negative eigenvalue
of the generalized eigenvalue problem (100), which corresponds to an eigenvalue
λ ∈ R+. In this case, the stationary real solution is spectrally unstable.

It remains to prove the stability of the stationary real branch for c < 0,
when L+(c) has one negative eigenvalue and L−(c) is nonnegative. For this
case, we introduce the constrained subspace of H2

a.p., where L−(c) is strictly
positive. Since L−(c)ψ = 0 we define,

Xc = {
U ∈ H2

a.p. : 〈ψ, U 〉L2 = 0
}
.

If U ∈ Xc and λ �= 0, we can invert L−(c) on U and reduce the eigenvalue
problem (99) to another generalized eigenvalue problem,

L+(c)U = γ L−1
− (c)U, γ = −λ2. (101)

As is well known [10], the operator L+(c)|Xc constrained on Xc is nonnegative
if 〈ψ , L−1

+ (c)ψ〉L2 ≤ 0. From exact computations, it follows that L−1
+ (c)ψ =

∂μψ hence,

〈ψ, L−1
+ (c)ψ〉L2 = 1

2

d

dμ
‖ψ‖2

L2 = 0,

because of the normalization condition ‖ψ‖2
L2 = 1. Therefore, operator L+(c)|Xc

is nonnegative for any c < 0 and γ ≥ 0 (λ ∈ iR) for any eigenvalue of the
generalized eigenvalue problem (101). In this case, the stationary real solution
is spectrally stable. �
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Figure 15. Time evolution of |�(x, t)| with c = 0.5 < c∗ and initial condition �(x, 0) = χψ(x)
for k = 1

2 and n = 0. The oscillatory behavior indicates that the real stationary state ψ is stable.

We note that the stationary real branch at other energy bands correspond
to operators L±(c) with several negative eigenvalues. As a result, the count
of negative eigenvalues becomes less explicit [2] and instabilities of the
corresponding real solutions may arise before the loop bifurcation in the
parameter continuation in c ∈ R.

5.3 Numerical simulations of the Gross–Pitaevskii equation

We now illustrate the stability of the stationary real branch at k = 1
2 with some

numerical simulations of the time-dependent Gross–Pitaevskii equation (1).
The time-dependent solutions �(x, t) are approximated using the split-step
Fourier method, where the initial condition �(x, 0) is chosen to be close to the
stationary state of the lowest energy band.

In Figure 15, we take c = 0.5 < c∗ and �(x, 0) = χψ(x), where χ ∈ R is
close to 1 and ψ(x) is the real stationary solution for k = 1

2 and n = 0. The
solution surface |�(x, t)| shows stable oscillations near the real stationary state.

Figure 16 shows the solution surface |�(x, t)| for c = 1.5 > c∗ subject to
the same initial condition �(x, 0) = χψ(x). In this case a different dynamical
pattern is observed. The solution �(x, t) does not remain close to the real
stationary state ψ(x) and instead oscillates about the complex stationary state.

Figures 17 and 18 illustrate the instability of the real stationary state and the
stability of the complex stationary state. Figure 17 shows �(x, t) for two time
instances 0 < t1 < t2. At t1 (which is close to t = 0), �(x, t1) is close to the real
stationary state, however, after some time we see that �(x, t2) is far from the
real stationary state but close to the complex stationary state. This behavior
repeats as the solution �(x, t) oscillates about the complex stationary state.
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Figure 16. Time evolution of |�(x, t)| with c = 1.5 > c∗ and initial condition �(x, 0) =
χψ(x). The instability of the real stationary state ψ is observed.
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Figure 17. Plots of �(x, t) for two time instances superimposed on the real and complex
stationary states for c = 1.5 as in Figure 16.

The periodic oscillations of �(0, t) on Figure 18 further indicates that the real
stationary states has lost its stability and the complex stationary state is stable.

6. Comparison with Bloch waves in optical resonators

We discuss here the loop bifurcations in the context of atomic Bloch oscillations
in optical cavities [14, 15]. A mathematical model for the coupled atom-cavity
dynamics in a driven Fabry-Perot resonators is given by the linear Schrödinger
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Figure 18. Periodic oscillations of �(0, t) for c = 1.5.

equations with a periodic potential,

i
∂�

∂t
=

(
− ∂2

∂x2
+ |α|2 cos2

( x

2

))
�, (102)

and the Heisenberg equation of motion,

dα

dt
=

(
i� − i N

∫ π

−π

|�(x, t)|2 cos2
( x

2

)
dx − K

)
α + Q, (103)

where �(x, t) : R × R → C is the wave function occupied by all N atoms,
α(t) : R → C is the expectation value for the death operator (related to
annihilation of a photon in the cavity field), and (N , Q, K, �) are positive
constants.

Stationary states satisfy the stationary Schrödinger equation,

−ψ ′′(x) + |α|2 cos2
( x

2

)
ψ(x) = μψ(x), (104)

where

α = Q

K − i� + iN
∫ π

−π
|ψ(x)|2 cos2

( x

2

)
dx

.

The nonlinearity arises in an integral form through the variable α.
Loop bifurcations of energy bands were reported in [15] based on numerical

approximations. We prove here that these loop bifurcations have a different
nature from those in the optical lattices governed by the stationary Schrödinger
equation (2) with the cubic nonlinearity. In particular, a change in the number
of negative eigenvalues in the operator L− for the stationary real branch is
impossible in the continuations with respect to parameters (N , Q, K, �).
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Let ψη be the Bloch wave of the linear Schrödinger equations,

−ψ ′′(x) + η cos2
( x

2

)
ψ(x) = μψ(x), η > 0, (105)

where μ depends on the Bloch wave number k ∈ [− 1
2 ,

1
2 ] and the parameter η.

The number of stationary Bloch waves for each k ∈ [− 1
2 ,

1
2 ] is found from the

implicit equation,

η = F(η; N , Q, K , �) := Q2

K 2 +
(
� − N

∫ π

−π
|ψη(x)|2 cos2

( x

2

)
dx

)2
.

(106)

For k = 0 and k = ± 1
2 , the stationary Bloch wave ψ is real and the eigenvalues

μ of the linear Schrödinger equations (105) are known to be simple for any
η > 0 for lower-order energy bands (see Figure 6.1 in [18]).

In what follows, we consider ψ to be the real stationary branch for k = 0 or
k = ± 1

2 . Differentiating (104) with respect to imaginary ψ gives us operator,

L− = −∂2
x + η cos2

( x

2

)
− μ,

whereas differentiating (104) with respect to real ψ gives a complicated
nonlocal expression for operator L+. For any η > 0, operator L− has a simple
zero eigenvalue with the eigenfunction ψη and the zero eigenvalue remains
simple in parameter continuations in η > 0. Hence, no complex solutions of
the stationary equation (104) for k = 0 or k = ± 1

2 may exist. Any bifurcations
and loops in the energy bands may only occur because of the change in the
number of roots of the implicit function (106) which results in the change in
the number of negative eigenvalues of the operator L+.

Numerical evidences in [15] show that the loops of the energy bands are
typically centered at the interior points of the Brillouin zone for k ∈ (0, 1

2 )
and these loops originate via the fold bifurcations in the roots of the implicit
equation (106). This mechanism is clearly different from the loop bifurcations
in the cubic stationary equation (2), where the loops of the energy band cannot
be centered at any k ∈ (0, 1

2 ) according to Lemma 1.

7. Conclusion

To summarize, stationary Bloch waves of the Gross–Pitaevskii equation are
studied in a periodic potential. It is proved that the stationary real solutions are
uniquely continued from the linear limit. Numerical and asymptotic results
indicate that the stationary real branch undertakes a bifurcation when an
eigenvalue of the linearization operator L− changes sign in the continuation
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with respect to the strength of the nonlinear interactions. The spectrum of L−
is computed numerically to observe this behavior.

The bifurcation of the stationary real branch is studied analytically using
the Lyapunov–Schmidt reduction method and is revealed to be a pitchfork
(symmetry-breaking) bifurcation. The analysis relies on the normal form
equations which expose the qualitative behavior of the system around the
bifurcation point. This behavior is illustrated numerically in specific examples.

Finally, the stability of the stationary states is examined. The stationary real
branch at the lowest energy band is found to be stable before the bifurcation
point after which it loses its stability. The new complex stationary solutions
are found to be stable as they appear. The stability of solutions along a loop in
the energy band is also established.
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