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Abstract. This work deals with the focusing Nonlinear Schrödinger Equation

in one dimension with pure-power nonlinearity near cubic. We consider the

spectrum of the linearized operator about the soliton solution. When the
nonlinearity is exactly cubic, the linearized operator has resonances at the edges

of the essential spectrum. We establish the degenerate bifurcation of these

resonances to eigenvalues as the nonlinearity deviates from cubic. The leading-
order expression for these eigenvalues is consistent with previous numerical

computations.

1. Introduction. The focusing, pure-power, Nonlinear Schrödinger Equation for
ψ(x, t) ∈ C, x ∈ Rn, t ∈ R,

i∂tψ = −∆ψ − |ψ|p−1ψ (NLSp)

finds applications in quantum mechanics, optics, and other areas, and has seen in-
tensive mathematical study in recent years (eg. [25, 15]). (NLSp) famously exhibits
solitary waves (sometimes called solitons), solutions which maintain a fixed spa-
tial profile, and which are observed to play a key role in the dynamics of general
solutions. One naturally asks about the stability of these waves, which leads im-
mediately to an investigation of the spectrum of the linearized operator governing
the dynamics close to the solitary wave solution. Systematic spectral analysis of
the linearized operator has a long history (eg. [29, 12], and for more recent studies
[9, 4, 27, 28]).

The principle motivation for the present work comes from [4] where resonance ei-
genvalues (with explicit resonance eigenfunctions) were observed to sit at the edges
(or thresholds) of the spectrum for the 1D linearized NLS problem with focusing
cubic nonlinearity. Numerically, it was observed that the same problem with power
nonlinearity close to p = 3 (on both sides) has a true eigenvalue close to the thresh-
old. In this paper we establish analytically the observed qualitative behaviour.
Stated roughly, our main result is:

for p ≈ 3, p 6= 3, the linearization of the 1D (NLSp) about its soliton has purely
imaginary eigenvalues, bifurcating from resonances at the edges of the essential
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spectrum of linearized (NLS3), whose distance from the thresholds is of order (p−
3)4.

The exact statement is given as Theorem 4 in Section 4, and includes the precise
leading order behaviour of the eigenvalues.

The eigenvalues obtained here, being on the imaginary axis, correspond to stable
behaviour at the linear level. A further motivation for obtaining detailed infor-
mation about the spectra of linearized operators is that such information is a key
ingredient in studying the asymptotic stability of solitary waves: see [2, 5, 6, 11, 23,
24, 1, 7] for some results of this type. Such results typically assume the absence of
threshold eigenvalues or resonances. The presence of a resonance is an exceptional
case which complicates the stability analysis by retarding the time-decay of pertur-
bations. Nevertheless, the asymptotic stability of solitons in the 1D cubic focusing
NLS was recently proved in [10]. The proof relies on integrable systems technology
and so is only available for the cubic equation. The solitons are known to be stable
in the (weaker) orbital sense for all p < 5 (the so-called mass subcritical range)
while for p ≥ 5 they are unstable [13, 30], but the question of asymptotic stability
for p < 5 and p 6= 3 seems to be open. The existence (and location) of eigenvalues
on the imaginary axis, which is shown here, should play a role in any attempt on
this problem.

The generic bifurcation of resonances and eigenvalues from the edge of the es-
sential spectrum was studied by [8] and [26] in three dimensions. Edge bifurcations
have also been studied in one dimensional systems using the Evans function in [20]
and [21] as well as in the earlier works [18], [19] and [22]. We do not follow that
route, but rather adopt the approach of [8, 26] (going back also to [17], and in
turn to the classical work [16]), using a Birman-Schwinger formulation, resolvent
expansion, and Lyapunov-Schmidt reduction.

Our work is distinct from [8, 26] due to the unique challenges of working in
one dimension, in particular the strong singularity of the free resolvent at zero
energy, which among other things increases by one the dimension of the range of
the projection involved in the Lyapunov-Schmidt reduction procedure.

Moreover, our work is distinct from all of [20, 21, 8, 26] in that we study the par-
ticular (and as it turns out non-generic) resonance and perturbation corresponding
to the near-cubic pure-power NLS problem. Generically, a resonance is associ-
ated with the birth or death of an eigenvalue, and such is the picture obtained in
[8, 26, 20, 21]: an eigenvalue approaches the essential spectrum, becomes a resonance
on the threshold and then disappears. In our setting, the eigenvalue approaches the
essential spectrum, sits on the threshold as a resonance, then returns as an eigenva-
lue. The bifurcation is degenerate in the sense that the expansion of the eigenvalue
begins at higher order, and the analysis we develop to locate this eigenvalue is thus
considerably more delicate.

The paper is organized as follows. The problem is set up in Section 2. In Section
3 we collect some results that are necessary for the bifurcation analysis. Section 4
is devoted to the statement and proof of the main result. The positivity of a certain
(explicit) coefficient, which is crucial to the proof, is verified numerically; details of
this computation are given in Section 5.

2. Mathematical setup. We consider (NLSp) in one space dimension:

i∂tψ = −∂2xψ − |ψ|p−1ψ. (2.1)
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Here ψ = ψ(x, t) : R× R→ C with 1 < p <∞. The NLS (2.1) admits solutions of
the form

ψ(x, t) = Qp(x)eit (2.2)

where Qp(x) > 0 satisfies

−Q′′p −Qpp +Qp = 0. (2.3)

In one dimension the explicit solutions

Qp−1p (x) =

(
p+ 1

2

)
sech2

(
p− 1

2
x

)
(2.4)

of (2.3) for each p ∈ (1,∞) are classically known to be the unique H1 solutions of
(2.3) up to spatial translation and phase rotation (see e.g. [3]). In what follows we
study the linearized NLS problem. That is, linearize (2.1) about the solitary wave
solutions (2.2) by considering solutions of the form

ψ(x, t) = (Qp(x) + h(x, t)) eit.

Then h solves, to leading order (i.e. neglecting terms nonlinear in h)

i∂th = (−∂2x + 1)h−Qp−1p h− (p− 1)Qp−1p Re(h).

We write the above as a matrix equation

∂t~h = JĤ~h

with

~h :=

(
Re(h)
Im(h)

)
J−1 :=

(
0 −1
1 0

)
Ĥ :=

(
−∂2x + 1− pQp−1p 0

0 −∂2x + 1−Qp−1p

)
.

The above JĤ is the linearized operator as it appears in [4]. We now consider the
system rotated

i∂t~h = iJĤ~h

and find U unitary so that, UiJĤU∗ = σ3H, where σ3 is one of the Pauli matrices
and with H self-adjoint:

σ3 =

(
1 0
0 −1

)
, U =

1√
2

(
1 i
1 −i

)
,

H =

(
−∂2x + 1 0

0 −∂2x + 1

)
− 1

2

(
p+ 1 p− 1
p− 1 p+ 1

)
Qp−1p =: H̃ − V (p).

In this way we are consistent with the formulation of [8, 26]. We can also arrive at

this system, i∂t~h = σ3H~h, by letting ~h =
(
h h̄

)T
from the start.

Thus we are interested in the spectrum of

Lp := σ3H

and so in what follows we consider the eigenvalue problem

Lpu = zu, z ∈ C, u ∈ L2(R,C2). (2.5)

That the essential spectrum of Lp is

σess(Lp) = (−∞,−1] ∪ [1,∞)
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and 0 is an eigenvalue of Lp are standard facts [4].
When p = 3 we have the following resonance at the threshold z = 1 [4]

u0 =

(
2−Q2

3

−Q2
3

)
= 2

(
tanh2 x

− sech2 x

)
(2.6)

in the sense that

L3u0 = u0, u0 ∈ L∞, u0 /∈ Lq, for q <∞. (2.7)

Our main interest is how this resonance bifurcates when p 6= 3 but |p− 3| is small.
We now seek an eigenvalue of (2.5) in the following form

z = 1− α2, α > 0. (2.8)

We note that the spectrum of Lp for the soliton (2.4) may only be located on the
Real or Imaginary axes [4], and so any eigenvalues in the neighbourhood of z = 1
must be real. There is also a resonance at z = −1 which we do not mention further;
symmetry of the spectrum of Lp ensures the two resonances bifurcate in the same
way.

We now recast the problem in accordance with the Birman-Schwinger formula-
tion (pp. 85 of [14]), as in [8, 26]. For (2.8), (2.5) becomes

(σ3H̃ − 1 + α2)u = σ3V
(p)u.

The constant-coefficient operator on the left is now invertible so we can write

u = (σ3H̃ − 1 + α2)−1σ3V
(p)u =: R(α)V (p)u.

After noting that V (p) is positive we set

w := V
1/2
0 u, V0 := V (p=3)

and apply V
1/2
0 to arrive at the problem

w = −Kα,pw, Kα,p := −V 1/2
0 R(α)V (p)V

−1/2
0 (2.9)

with

R(α) =

(
(−∂2x + α2)−1 0

0 (−∂2x + 2− α2)−1

)
. (2.10)

We now seek solutions (α,w) of (2.9) which correspond to eigenvalues 1 − α2 and

eigenfunctions V
−1/2
0 w of (2.5). The decay of the potential V (p) and hence V

1
2
0 now

allows us to work in the space L2 = L2(R,C2), whose standard inner product we
denote by 〈·, ·〉.

The resolvent R(α) has integral kernel

R(α)(x, y) =

(
1
2αe
−α|x−y| 0

0 1
2
√
2−α2

e−
√
2−α2|x−y|

)
for α > 0. We expand R(α) as

R(α) =
1

α
R−1 +R0 + αR1 + α2RR. (2.11)

These operators have the following integral kernels

R−1(x, y) =

(
1
2 0
0 0

)
, R0(x, y) =

(
− |x−y|2 0

0 e−
√

2|x−y|

2
√
2

)
, R1(x, y) =

(
|x−y|2

4 0
0 0

)
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and for α > 0 the remainder term RR is continuous in α and uniformly bounded as
an operator from a weighted L2 space (with sufficiently strong polynomial weight)
to its dual. Moreover, since the entries of the full integral kernel R(α)(x, y) are
bounded functions of |x− y|, we see that the entries of

RR(x, y) =
1

α2

(
R(α)(x, y)− (

1

α
R−1(x, y) +R0(x, y) + αR1(x, y))

)
grow at most quadratically in |x− y| as |x− y| → ∞. We also expand the potential
V (p) in ε where ε := p− 3

V (p) = V0 + εV1 + ε2V2 + ε3VR, ε := p− 3 (2.12)

and

V0 =

(
2 1
1 2

)
Q2

3 V1 =
1

2

(
1 1
1 1

)
Q2

3 +

(
2 1
1 2

)
q1

V2 =
1

2

(
1 1
1 1

)
q1 +

(
2 1
1 2

)
q2 VR =

1

2

(
1 1
1 1

)
q2 +

(
2 1
1 2

)
qR

V
1/2
0 =

1

2

(√
3 + 1

√
3− 1√

3− 1
√

3 + 1

)
Q3.

Here we have expanded

Qp−1p (x) = Q2
3(x) + εq1(x) + ε2q2(x) + ε3qR(x)

and the computation gives

Q2
3(x) = 2 sech2 x, q1(x) = sech2 x

(
1

2
− 2x tanhx

)
q2(x) =

1

2

(
2x2 tanh2 x sech2 x− x2 sech4 x− x tanhx sech2 x

)
.

By Taylor’s theorem, the remainder term qR(x) satisfies an estimate of the form
|qR(x)| ≤ C(1 + |x|3) sech2(x/2) for some constant C which is uniform in x and
ε ∈ (−1, 1). We will henceforth write

Q for Q3 and Kα,ε for Kα,p.

3. Some preliminaries. We study (2.9), that is:

(Kα,ε + 1)w = 0. (3.1)

Using the expansions (2.11) and (2.12) for R(α) and V (p) we make the following
expansion

Kα,ε =
1

α

(
K−10 + εK−11 + ε2K−12 + ε3KR1

)
+K00 + εK01 + ε2K02 + ε3KR2

+ αK10 + αεKR3

+ α2KR4

(3.2)

where KR4 is uniformly bounded and continuous in α > 0 and ε in a neighbourhood
of 0, as an operator on L2(R,C2).

Before stating the main theorem we assemble some necessary facts about the
above operators.
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Lemma 1. Each operator appearing in the expansion (3.2) for Kα,ε is a Hilbert-
Schmidt (so in particular bounded and compact) operator from L2(R,C2) to itself.

Proof. This is a straightforward consequence of the spatial decay of the weights

which surround the resolvent. The facts that ‖V −1/20 ‖ ≤ Ce|x|, and that ‖V 1/2
0 ‖ ≤

Ce−|x|, while each of ‖V0‖, ‖V1‖, ‖V2‖ and ‖VR‖ can be bounded by Ce−3|x|/2 (say
if we restrict to |ε| < 1

2 ) imply easily that these operators all have square integrable
integral kernels.

Remark 2. The same decay estimates for the potentials used in the proof of Lemma
1 show that for α > 0 and w ∈ L2 solving (2.9) the corresponding eigenfunction

of (2.5) u = V
−1/2
0 w lies in L2 and so the eigenvalue z = 1 − α2 is in fact a true

eigenvalue. Indeed w ∈ L2 =⇒ V (p)V
−1/2
0 w ∈ L2 and so u = −R(α)V (p)V

−1/2
0 w ∈

L2, since the free resolvent R(α) preserves L2 for α > 0 .

We will also need the projections P and P which are defined as follows: for
f ∈ L2 let

Pf :=
〈v, f〉v
‖v‖2

, v := V
1/2
0

(
1
0

)
as well as the complementary P := 1−P . A direct computation shows that for any
f ∈ L2 we have

K−10f = −4Pf. (3.3)

Note that all operators in the expansion containing R−1 return outputs in the
direction of v.

Lemma 3. The operator P (K00 + 1)P has a one dimensional kernel spanned by

w0 := V
1/2
0 u0

as an operator from Ran(P ) to Ran(P ).

Proof. First note that by (2.7)

−V0u0 = σ3u0 − H̃u0, [−V0u0]1 = [u0]
′′
1 (3.4)

from which it follows that

Pw0 = 0, i.e. w0 ∈ Ran(P ).

Then a direct computation using (3.4), the expansion (3.2), the expression for R0,
and integration by parts, shows that

(K00 + 1)w0 = 2v

and so indeed P (K00 + 1)Pw0 = 0.
Theorem 5.2 in [17] shows that the kernel of the analogous scalar operator can

be at most one dimensional. We will use this argument, adapted to the vector
structure, to show that any two non-zero elements of the kernel must be multiples
of each other. Take w ∈ L2 with 〈w, v〉 = 0 and P (K00 + 1)w = 0. That is
(K00 + 1)w = cv for some constant c. This means

−V 1/2
0 R0V0V

−1/2
0 w + w = cV

1/2
0

(
1
0

)
.
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Let w = V
1/2
0 u where u =

(
u1
u2

)
. We then obtain, after rearranging and expand-

ing (
u1
u2

)
=

(
c− 1

2

∫
R |x− y|Q

2(y) (2u1(y) + u2(y)) dy
1

2
√
2

∫
R exp

(
−
√

2|x− y|
)
Q2(y)(u1(y) + 2u2(y))dy

)
.

We now rearrange the first component. Expand

−1

2

∫
R
|x− y|Q2(y)(2u1(y) + u2(y))dy

=− 1

2

∫ x

−∞
(x− y)Q2(y)(2u1(y) + u2(y))dy

− 1

2

∫ ∞
x

(y − x)Q2(y)(2u1(y) + u2(y))dy

and rewrite the first term as

− x

2

∫ x

−∞
Q2(y)(2u1(y) + u2(y))dy +

1

2

∫ x

−∞
yQ2(y)(2u1(y) + u2(y))dy

=
x

2

∫ ∞
x

Q2(y)(2u1(y) + u2(y))dy + b− 1

2

∫ ∞
x

yQ2(y)(2u1(y) + u2(y))dy

where

b :=
1

2

∫
R
yQ2(y)(2u1(y) + u2(y))dy

and where we used
∫
R 2Q2u1 + Q2u2 = 0 since 〈w, v〉 = 0. So putting everything

back together we see(
u1
u2

)
=

(
c+ b+

∫∞
x

(x− y)Q2(y) (2u1(y) + u2(y)) dy
1

2
√
2

∫
R exp

(
−
√

2|x− y|
)
Q2(y)(u1(y) + 2u2(y))dy

)
. (3.5)

We claim that as x→∞ (
u1
u2

)
→
(
c+ b

0

)
.

Observe∣∣∣∣ ∫ ∞
x

(x− y)Q2(y) (2u1(y) + u2(y)) dy

∣∣∣∣ ≤ ∫ ∞
x

|y − x|Q2(y)|2u1(y) + u2(y)|dy

≤
∫ ∞
x

|y|Q2(y)|2u1(y) + u2(y)|dy

→ 0

as x → ∞. Here we have used the fact that w ∈ L2 implies Q|2u1 + u2| ∈ L2 and
that |y|Q ∈ L2. As well, in the second component∫

R
e−
√
2|x−y|Q2(y)(u1(y) + 2u2(y))dy

=e−
√
2x

∫ x

−∞
e
√
2yQ2(y)(u1(y) + 2u2(y))dy

+ e
√
2x

∫ ∞
x

e−
√
2yQ2(y)(u1(y) + 2u2(y))dy
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and ∣∣∣∣e−√2x

∫ x

−∞
e
√
2yQ2(y)(u1(y) + 2u2(y))dy

∣∣∣∣
≤ e−

√
2x

∫ x

−∞
e
√
2yQ2(y)|u1(y) + 2u2(y)|dy

≤ e−
√
2x

(∫ x

−∞
e2
√
2yQ2(y)dy

)1/2(∫ x

−∞
Q2(y)|u1(y) + 2u2(y)|2dy

)1/2

≤ Ce−
√
2x

(∫ x

−∞
e2
√
2yQ2(y)dy

)1/2

≤ Ce−
√
2x

(∫ x

−∞
e2
√
2ye−2ydy

)1/2

≤ Ce−
√
2x
(
e−2
√
2xe−2x

)1/2
≤ Ce−x → 0, x→∞

where we again used Q|u1 + 2u2| ∈ L2. Similarly,∣∣∣∣e√2x

∫ ∞
x

e−
√
2yQ2(y)(u1(y) + 2u2(y))dy

∣∣∣∣→ 0

as x→∞ which addresses the claim.
Next we claim that if c+ b = 0 in (3.5) then u ≡ 0. To address the claim we first

note that if c+ b = 0 then u ≡ 0 for all x ≥ X for some X, by estimates similar to
those just done. Finally, we appeal to ODE theory. Differentiating (3.5) in x twice
returns the system

u′′1 = −2Q2u1 −Q2u2 (3.6)

u′′2 − 2u2 = −Q2u1 − 2Q2u2. (3.7)

Any solution u to the above with u ≡ 0 for all large enough x must be identically
zero.

With the claim in hand we finish the argument. Given two non-zero elements of
the kernel, say u and ũ with limits as x → ∞ (written as above) c + b and c̃ + b̃
respectively, the combination

u∗ = u− c+ b

c̃+ b̃
ũ

satisfies (3.5) but with u∗(x) → 0 as x → ∞, and so u∗ ≡ 0. Therefore, u and ũ
are linearly dependent, as required.

Note that K00, and hence P (K00 + 1)P , is self-adjoint. Indeed

K00 = −V 1/2
0 R0V0V

−1/2
0

= −V −1/20 V0R0V
1/2
0

= (K00)∗.

As we have seen above in Lemma 1, thanks to the decay of the potential, PK00P
is a compact operator. Therefore, the simple eigenvalue −1 of PK00P is isolated
and so

(P (K00 + 1)P )−1 : {v, w0}⊥ → {v, w0}⊥ (3.8)

exists and is bounded.
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With the above preliminary facts assembled, we proceed to the bifurcation anal-
ysis.

4. Bifurcation analysis. This section is devoted to the proof of the main result:

Theorem 4. There exists ε0 > 0 such that for −ε0 ≤ ε ≤ ε0 the eigenvalue problem
(3.1) has a solution (α,w) of the form

w = w0 + εw1 + ε2w2 + w̃

α = ε2α2 + α̃
(4.1)

where α2 > 0, w0, w1, w2 are known (given below), and |α̃| < C|ε|3 and ‖w̃‖L2 <
C|ε|3 for some C > 0.

Remark 5. This theorem confirms the behaviour observed numerically in [4]: for

p 6= 3 but close to 3, the linearized operator JĤ (which is unitarily equivalent to
iLp) has true, purely imaginary eigenvalues in the gap between the branches of
essential spectrum, which approach the thresholds as p→ 3. Note Remark 2 to see

that u = V
−1/2
0 w is a true L2 eigenfunction of (2.5). In addition, the eigenfunction

approaches the resonance eigenfunction in some weighted L2 space. Furthermore,
we have found that α2, the distance of the eigenvalues from the thresholds, is to
leading order proportional to (p − 3)4. Finally, note that α = ε2α2 + O(ε3) with
α2 > 0 gives α > 0 for both ε > 0 and ε < 0, ensuring the eigenvalues appear on
both sides of p = 3.

The quantities in (4.1) are defined as follows:

w0 := V
1/2
0 u0

Pw1 :=
1

4
K−11w0

Pw1 := −
(
P (K00 + 1)P

)−1(1

4
PK00K−11w0 + PK01w0

)
Pw2 :=

1

4

(
K−11w1 +K−12w0 + α2(K00 + 1)w0

)
Pw2 := −

(
P (K00 + 1)P

)−1(1

4
PK00K−11w1 +

1

4
PK00K−12w0

+
α2

4
PK00(K00 + 1)w0 + PK01w1 + PK02w0 + α2PK10w0

)

α2 :=
− 1

4 〈w0,K00K−11w1〉 − 1
4 〈w0,K00K−12w0〉 − 〈w0,K01w1〉 − 〈w0,K02w0〉

〈w0,K10w0〉+ 1
4 〈w0,K00(K00 + 1)w0〉

Remark 6. A numerical computation shows

α2 ≈ 2.52/8 > 0.

Since the positivity of α2 is crucial to the main result, details of this computation
are described in Section 5.

Note that the functions on which P (K00+1)P is being inverted in the expressions
for Pw1 and Pw2 are orthogonal to both w0 and v, and so these quantities are well-
defined by (3.8). The projections to v are zero by the presence of P . As for the
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projections to w0, the identity

〈w0,
1

4
K00K−11w0 +K01w0〉 = 0 (4.2)

has been verified analytically. It is because of this identity that the O(ε) term is
absent in the expansion of α in (4.1). The fact that

0 = 〈w0,
1

4
K00K−11w1 +

1

4
K00K−12w0 +

α2

4
K00(K00+1)w0 +K01w1

+K02w0 + α2K10w0〉

comes from our definition of α2.
The above definitions, along with (3.3), imply the relationships below

0 = K−10w0 (4.3)

0 = K−11w0 +K−10w1 (4.4)

0 = K−10w2 +K−11w1 +K−12w0 + α2(K00 + 1)w0 (4.5)

0 = P (K00 + 1)w1 + PK01w0 (4.6)

0 = P (K00 + 1)w2 + PK01w1 + PK02w0 + α2PK10w0 (4.7)

which we will use in what follows.
Using the expression for α in (4.1), our expansion (3.2) for Kα,ε now takes the

form

Kα,ε =
1

α

(
K−10 + εK−11 + ε2K−12 + ε3KR1

)
+K00 + εK01 + ε2K02 + ε3KR2

+ (α2ε
2 + α̃)K10 + (α2ε

2 + α̃)εKR3 + (α2ε
2 + α̃)2KR4

=:
1

α

(
K−10 + εK−11 + ε2K−12 + ε3KR1

)
+K00 + εK1 + α̃K2

where K1 is a bounded (uniformly in ε) operator depending on ε but not α̃, while
K2 is a bounded (uniformly in ε and α̃) operator depending on both ε and α̃.

Further decomposing

w̃ = βv +W, 〈W, v〉 = 0,

we aim to show existence of a solution with the remainder terms α̃, β and W small.
We do so via a Lyapunov-Schmidt reduction.

First substitute (4.1) to (3.1) and apply the projection P to obtain

0 = P (Kα,ε + 1)w

= P (Kα,ε + 1)(w0 + εw1 + ε2w2 + βv +W )

= P (K00 + 1)w0 + εP (K00 + 1)w1 + εPK01w0

+ ε2P (K00 + 1)w2 + ε2PK01w1 + ε2PK02w0 + ε2α2PK10w0

+ P (K00 + 1)(βv +W ) + α̃PK10w0 + P
(
εK1 + α̃K2

)
(βv +W )

+ ε3P
(
KR2w0 +K02w1 +K01w2 + εK02w2 + εKR2w1 + ε2KR2w2

)
+ (α2ε

2 + α̃)PK10(εw1 + ε2w2) + (α2ε
2 + α̃)εPKR3(w0 + εw1 + ε2w2)

+ (α2ε
2 + α̃)2PKR4(w0 + εw1 + ε2w2).

(4.8)
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Making some cancellations coming from Lemma 3, (4.6) and (4.7) leads to

−P (K00 + 1)PW =

βPK00v + α̃PK10w0 + P
(
εK1 + α̃K2

)
(βv +W )

+ ε3P
(
KR2w0 +K02w1 +K01w2 + εK02w2 + εKR2w1 + ε2KR2w2

)
+ (α2ε

2 + α̃)PK10(εw1 + ε2w2) + (α2ε
2 + α̃)εPKR3(w0 + εw1 + ε2w2)

+ (α2ε
2 + α̃)2PKR4(w0 + εw1 + ε2w2)

=: F(W ; ε, α̃, β).

According to (3.8), inversion of P (K00 + 1)P on F requires the solvability con-
dition

P0F = 0, P0 :=
1

‖w0‖22
〈w0, ·〉w0, P 0 := 1− P0 (4.9)

which we solve together with the fixed point problem

W =
(
−P (K00 + 1)P

)−1
P 0F(W ; ε, α̃, β) =: G(W ; ε, α̃, β) (4.10)

in order to solve (4.8).
Write

F := P
(
βK00v + α̃K10w0 +

(
εK1 + α̃K2

)
(βv +W ) + ε3f1 + εα̃f2 + α̃2h1

)
where f1 and f2 denote functions depending on (and L2 bounded uniformly in) ε but
not α̃, while h1 denotes an L2 function depending on (and uniformly L2 bounded
in) both ε and α̃.

Lemma 7. For any M > 0 there exists ε0 > 0 and R > 0 such that for all
−ε0 ≤ ε ≤ ε0 and for all α̃ and β with |α̃| ≤ M |ε|3 and |β| ≤ M |ε|3 there exists a
unique solution W ∈ L2 ∩ {v, w0}⊥ of (4.10) satisfying ‖W‖L2 ≤ R|ε|3.

Proof. We prove this by means of Banach Fixed Point Theorem. We must show that
G(W ) maps the closed ball of radius R|ε|3 into itself and that G(W ) is a contraction
mapping. Taking W ∈ L2 orthogonal to v and w0 such that ‖W‖L2 ≤ R|ε|3 and
given M > 0 where |α̃| ≤ M |ε|3 and |β| ≤ M |ε|3, we have, using the boundedness

of
(
−P (K00 + 1)P

)−1
P 0,

‖G‖L2

≤ C|β|‖PK00v + P
(
εK1 + α̃K2

)
v‖L2 + C|α̃|‖P (K10w0 + εf2 + α̃h1) ‖L2

+ C‖P
(
εK1 + α̃K2

)
W‖L2 + |ε|3C‖Pf1‖L2

≤ CM |ε|3 + CM |ε|3 + C|ε|‖W‖L2 + C|α̃|‖W‖L2 + C|ε|3

≤ C|ε|3 + CR|ε|4

≤ R|ε|3

for some appropriately chosen R with |ε| small enough. Here C is a positive, finite
constant whose value changes at each appearance. Next consider

‖G(W1)− G(W2)‖L2

≤ C‖P
(
εK1 + α̃K2

)
‖L2→L2‖W1 −W2‖L2

≤ C|ε|‖P K1‖L2→L2‖W1 −W2‖L2 + C|α̃|‖P K2‖L2→L2‖W1 −W2‖L2

≤ C|ε|‖W1 −W2‖L2 ≤ κ‖W1 −W2‖L2
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with 0 < κ < 1 by taking |ε| sufficiently small. Hence G(W ) is a contraction, and
we obtain the desired result.

Lemma 7 provides W as a function of α̃ and β, which we may then substitute
into (4.9) to get

0 = 〈w0,F〉
= β〈w0,K00v〉+ α̃〈w0,K10w0〉+ εβ〈w0,K1v〉+ α̃β〈w0,K2v〉

+ ε3〈w0, f1〉+ εα̃〈w0, f2〉+ α̃2〈w0, h1〉+ ε〈w0,K1W 〉+ α̃〈w0,K2W 〉
=: β〈w0,K00v〉+ α̃〈w0,K10w0〉+ F1 (4.11)

which is the first of two equations relating α̃ and β.
The second equation is the complementary one to (4.8): substitute (4.1) to (3.1)

but this time multiply by α and take projection P to see

0 = αP (Kα,ε + 1)w

= K−10w0 + ε(K−11w0 +K−10w1)

+ ε2 (K−10w2 +K−11w1 +K−12w0) + ε2α2(K00 + 1)w0

+ ε3(K−11w2 +K−12w1 +KR1w0 + εK−12w2 + εKR1w1 + ε2KR1w2)

+ βK−10v +K−10W + ε(K−11 + εK−12 + ε2KR1)(βv +W )

+ α̃(K00 + 1)w0 + ε3α2P (K00 + 1)(w1 + εw2) + εα̃P (K00 + 1)(w1 + εw2)

+ ε2α2P (K00 + 1)(βv +W ) + α̃P (K00 + 1)(βv +W )

+ αP (εK01 + ε2K02 + ε3KR2 + αK10 + αεKR3 + α2KR4)

× (w0 + εw1 + ε2w2 + βv +W ).

(4.12)

After using known information about w0, w1, w2, α2 coming from (4.3), (4.4), (4.5)
and noting that K−10W = −4PW = 0 from (3.3) we have

0 = βK−10v + α̃(K00 + 1)w0

+ ε3(K−11w2 +K−12w1 +KR1w0 + εK−12w2 + εKR1w1 + ε2KR1w2)

+ ε(K−11 + εK−12 + ε2KR1)(βv +W )

+ ε3α2P (K00 + 1)(w1 + εw2) + εα̃P (K00 + 1)(w1 + εw2)

+ ε2α2P (K00 + 1)(βv +W ) + α̃P (K00 + 1)(βv +W )

+ αP (εK01 + ε2K02 + ε3KR2 + αK10 + αεKR3 + α2KR4)

× (w0 + εw1 + ε2w2 + βv +W ).

Written more compactly, this is

0 =βK−10v + α̃(K00 + 1)w0

+ ε3f4 + εK3(βv +W ) + α̃εf5 + α̃K4(βv +W ) + α̃2h2

where K3 is a bounded (uniformly in ε) operator containing ε but not α̃, while K4

is a bounded (uniformly in ε and α̃) operator containing both ε and α̃. Functions f4
and f5 depend on ε (and are uniformly L2-bounded) but not α̃, while the function h2
depends on both ε and α̃ (and is uniformly L2-bounded). To make the relationship
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between α̃ and β more explicit we take inner product with v

0 = β〈v,K−10v〉+ α̃〈v, (K00 + 1)w0〉+ ε3〈v, f4〉
+ ε〈v,K3(βv +W )〉+ α̃ε〈v, f5〉+ α̃〈v,K4(βv +W )〉+ α̃2〈v, h2〉

=: β〈v,K−10v〉+ α̃〈v, (K00 + 1)w0〉+ F2. (4.13)

Now let

~ζ =

(
α̃
β

)
and rewrite (4.11) and (4.13) in the following way

A~ζ :=

(
〈w0,K10w0〉 〈w0,K00v〉
〈v, (K00 + 1)w0〉 〈v,K−10v〉

)(
α̃
β

)
=

(
F1

F2

)
which we recast as a fixed point problem

~ζ = A−1
(
F1

F2

)
=: ~F (α̃, β; ε). (4.14)

We have computed

A =

(
0 16
16 −32

)
so in particular, A is invertible. We wish to show there is a solution (α̃, β) of (4.14)
of the appropriate size. We establish this fact in the following Lemmas. Lemmas 8
and 9 are accessory to Lemma 10.

Lemma 8. The operators and functions K2, K4 and h1, h2 are continuous in
α̃ > 0.

Proof. The operators and function in question are compositions of continuous func-
tions of α̃.

Lemma 9. The W given by Lemma 7 is continuous in ~ζ for sufficiently small |ε|.

Proof. Let (α̃1, β1) give rise to W1 and let (α̃2, β2) give rise to W2 via Lemma 7.
Take |α̃1 − α̃2| < δ and |β1 − β2| < δ. We show that ‖W1 −W2‖L2 < Cδ for some
constant C > 0. Observing K2 depends on α̃, we see

‖W1 −W2‖L2 = ‖
(
P (K00 + 1)P

)−1
P 0‖L2→L2‖F(W1, ~ζ1; ε)−F(W2, ~ζ2; ε)‖L2

≤ C
∥∥∥∥(β1 − β2)K00v + (α̃1 − α̃2)K10w0 + ε(β1 − β2)K1v

+ εK1(W1 −W2) + α̃1β1K2(α̃1)v − α̃2β2K2(α̃2)v + α̃1K2(α̃1)W1

− α̃2K2(α̃2)W2 + ε(α̃1 − α̃2)f2 + α̃2
1h1(α̃1)− α̃2

2h1(α̃2)

∥∥∥∥
L2

≤ Cδ + C|ε|‖W1 −W2‖L2

+ ‖α̃1K2(α̃1)(W1 −W2) +
(
α̃1K2(α̃1)− α̃2K2(α̃2)

)
W2‖L2

≤ Cδ + C|ε|‖W1 −W2‖L2

noting that |α̃1| ≤M |ε|3. Rearranging the above gives

‖W1 −W2‖L2 < Cδ

for small enough |ε|.
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Lemma 10. There exists ε0 > 0 such that for all −ε0 ≤ ε ≤ ε0 the equation (4.14)
has a fixed point with |α̃|, |β| ≤M |ε|3 for some M > 0.

Proof. We prove this by means of the Brouwer Fixed Point Theorem. We show

that ~F maps a closed square into itself and that ~F is a continuous function. Take
|α̃|, |β| ≤ M |ε|3 and and so by Lemma 7 we have ‖W‖L2 ≤ |ε|3R for some R > 0.
Consider now

‖A−1‖ |F1|

≤ ‖A−1‖

(
|ε||β||〈w0,K1v〉|+ |α̃||β||〈w0,K2v〉|+ |ε|3|〈w0, f1〉|

+ |ε||α̃||〈w0, f2〉|+ |α̃|2|〈w0, h1〉|+ |ε||〈w0,K1W 〉|+ |α̃||〈w0,K2W 〉|

)
≤ CM |ε|4 + CM2|ε|6 + C|ε|3 + CM |ε|4 + CM2|ε|6 + CR|ε|4

≤ C|ε|3 + CM |ε|4 ≤M |ε|3

and

‖A−1‖ |F2|

≤ ‖A−1‖

(
|ε|3|〈v, f4〉|+ |ε||〈v,K3(βv +W )〉|+ |α̃||ε||〈v, f5〉|

+ |α̃||〈v,K4(βv +W )〉|+ |α̃|2|〈v, h2〉|

)
≤ C|ε|3 + CM |ε|4 + CR|ε|4 + CM |ε|4 + CM2|ε|6 + CMR|ε|6 + CM2|ε|6

≤ C|ε|3 + CM |ε|4 ≤M |ε|3

for some choice of M > 0 and sufficiently small |ε| > 0. Here C > 0 is a constant

that is different at each instant. So ~F maps the closed square to itself.

It is left to show that ~F is continuous. Given η > 0 take |α̃1 − α̃2| < δ and
|β1 − β2| < δ. Let (α̃1, β1) give rise to W1 and let (α̃2, β2) give rise to W2 via
Lemma 7. We will also use Lemma 8 and Lemma 9. Now consider

|F1(α̃1, β1)−F1(α̃2, β2)|

=
∣∣∣ε(β1 − β2)〈w0,K1v〉+ α̃1β1〈w0,K2(α̃1)v〉 − α̃2β2〈w0,K2(α̃2)v〉

+ ε(α̃1 − α̃2)〈w0, f2〉+ α̃2
1〈w0, h1(α̃1)〉 − α̃2

2〈w0, h1(α̃2)〉

+ ε〈w0,K1(W1 −W2)〉+ α̃1〈w0,K2(α̃1)W1〉 − α̃2〈w0,K2(α̃2)W2〉
∣∣∣

≤ Cδ + C‖h1(α̃1)− h1(α̃2)‖L2

+ C‖W1 −W2‖L2 + C‖K2(α̃1)−K2(α̃2)‖L2→L2

≤ Cδ < η

‖A−1‖
√

2

for small enough δ. Similarly we can show

|F2(α̃1, β1)−F2(α̃2, β2)| ≤ Cδ < η

‖A−1‖
√

2
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for δ small enough. Putting everything together gives |~F (~ζ1) − ~F (~ζ2)| < η as

required. Hence ~F is continuous.

So finally we have solved both (4.8) and (4.12), and hence (3.1), and so have
proved Theorem 4.

5. Comments on the computations. Analytical and numerical computations
were used in the above to compute inner products such as the ones appearing in the
definition of α2 (4.1). It was critical to establish that α2 > 0 since the expansion
of the resolvent R(α) (2.10) requires α > 0. Inner products containing w0 but not
w1 can be written as an explicit single integral and then evaluated analytically or
numerically with good accuracy. For example

〈w0,K02w0〉+
1

4
〈w0,K00K−12w0〉

=− 1

2

∫
R2

|x− y|
(
4Q2(x)− 3Q4(x)

)
×
(
Q2(y)q1(y)− q1(y) + 3Q2(y)q2(y)− 4q2(y)− c2

2
Q2(y)

)
dydx

+
1

2
√

2

∫
R2

e−
√
2|x−y|(2Q2(x)− 3Q4(x)

)
×
(
Q2(y)q1(y)− q1(y) + 3Q2(y)q2(y)− 2q2(y)− c2

4
Q2(y)

)
dydx

=−
∫
R
Q2(y)

(
Q2(y)q1(y)− q1(y) + 3Q2(y)q2(y)− 4q2(y)− c2

2
Q2(y)

)
dy

−
∫
R
Q2(y)

(
Q2(y)q1(y)− q1(y) + 3Q2(y)q2(y)− 2q2(y)− c2

4
Q2(y)

)
dy

≈− 2.9369

where

c2 =
1

2

∫
R
Q2q1 − q1 + 3Q2q2 − 4q2.

To reduce the double integral to a single integral we recall some facts about the
integral kernels. Let

h(y) = −1

2

∫
R
|x− y|

(
4Q2(x)− 3Q4(x)

)
dx.

Then h solves the equation

h′′ = −4Q2 + 3Q4.

Notice that −4Q2 + 3Q4 = −2Q2u1 − Q2u2 where u1 and u2 are the components
of the resonance u0 (2.6). Observing the equation (3.6) we see that h = u1 + c =
2−Q2 + c for some constant c. We can directly compute h(0) = −2 to find c = −2
and so h = −Q2. A similar argument involving (3.7) gives

1

2
√

2

∫
R
e−
√
2|x−y|(2Q2(x)− 3Q4(x)

)
dx = u2(y) = −Q2(y).

Many of the inner products can be computed analytically. These include the
identity (4.2), the entires in the matrix A in (4.14) and the denominator appearing
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in the expression for α2. As an example we evaluate the denominator of α2:

〈w0,K10w0〉+
1

4
〈w0,K00(K00 + 1)w0〉

= −
∫
R2

(
3Q4(x)− 4Q2(x)

) (x− y)2

4

(
3Q4(y)− 4Q2(y)

)
dydx

+
1

2

∫
R2

(
4Q2(x)− 3Q4(x)

)
|x− y|Q2(y)dydx

− 1

4
√

2

∫
R2

(
4Q2(x)− 3Q4(x)

)
e−
√
2|x−y|Q2(y)dydx

=
3

2

∫
R
Q4(y)dy

= 8

where the first integral is zero by a direct computation and the remaining double
integrals are converted to single integrals as above.
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x

Components o f Pw1

 

 

Figure 1. The two components of Pw1 computed numerically
with 32 basis terms.

Computing inner products containing w1 is harder. We have an explicit expres-
sion for Pw1 but lack an explicit expression for Pw1. Therefore we approximate
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x

A Consistency Check

Figure 2. The two components of function g with the computed
P (K00 + 1)Pw1 on top. Again 32 basis terms were used in this
computation. At this scale the difference can only be seen around
zero and at the endpoints.

Pw1 by numerically inverting P (K00 + 1)P in

P (K00 + 1)Pw1 = −
(

1

4
PK00K−11w0 + PK01w0

)
=: g.

Note that 〈g, v〉 = 〈g, w0〉 = 0. We represent P (K00 + 1)P as a matrix with respect
to a basis {φj}Nj=1. The basis is formed by taking terms from the typical Fourier
basis and projecting out the components of each function in the direction of v and
w0. Some basis functions were removed to ensure linear independence of the basis.

Let Pw1 =
∑N
j=1 ajφj . Then

B~a = ~b

where Bj,k = 〈φj , (K00 + 1)φk〉 and bj = 〈φj , g〉. So we can solve for ~a by inverting

the matrix B. Once we have an approximation for Pw1 we can compute P (K00 +
1)Pw1 directly to observe agreement with the function g. With this agreement we
are confident in our numerical algorithm and that our numerical approximation for
Pw1 is accurate. In Figure 1 we show the two components of Pw1 as computed
numerically. Figure 2 shows the components of the function g with the computed
P (K00 + 1)Pw1 on top.
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With an approximation for Pw1 in hand we can combine it with our explicit
expression for Pw1 and compute inner products containing w1 in the same way as
the previous inner product containing w0. In this way we establish that α2 > 0.
We list computed values for the numerator of α2 against the number of basis terms
used in Table 1.

Number of Basis Terms 8α2

20 2.4992
24 2.5137
28 2.5189
30 2.5201
32 2.5207

Table 1. Numerical values for 8α2 for the number of basis terms
used in the computation.

Acknowledgments. The authors thank T.P. Tsai for suggesting the problem and
for helpful discussions. MC is supported by an NSERC CGS. SG is supported by
an NSERC Discovery Grant.

REFERENCES

[1] D. Bambusi, Asymptotic stability of ground states in some hamiltonian pde with symmetry,
Comm. Math. Phys., 320 (2013), 499–542.

[2] V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear

Schrödinger equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 20 (2003), 419–475.
[3] T. Cazenave, Semilinear Schrödginer Equations, American Mathematical Soc., Providence,

RI, 2003.
[4] S. Chang, S. Gustafson, K. Nakanishi and T. Tsai, Spectra of linearized operators for NLS

solitary waves, SIAM J. Math Anal., 39 (2007), 1070–1111.

[5] S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl.
Math., 54 (2001), 1110–1145.

[6] S. Cuccagna, On asymptotic stability of ground states of NLS, Rev. Math. Phys., 15 (2003),

877–903.
[7] S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger

equation, Trans. Amer. Math. Soc., 366 (2014), 2827–2888.

[8] S. Cuccagna and D. Pelinovsky, Bifurcations from the endpoints of the essential spectrum in
the linearized nonlinear Schrödinger problem, J. Math. Phys., 46 (2005), 053520, 15pp.

[9] S. Cuccagna, D. Pelinovsky and V. Vougalter, Spectra of positive and negative energies in
the linearized NLS problem, Comm. Pure Appl. Math., 58 (2005), 1–29.

[10] S. Cuccagna and D. Pelinovsky, The asymptotic stability of solitons in the cubic NLS equation

on the line, Applicable Analysis, 93 (2014), 791–822.
[11] Z. Gang and I. M. Sigal, Asymptotic stability of nonlinear Schrödinger equations with poten-

tial, Rev. Math. Phys., 17 (2005), 1143–1207.

[12] M. Grillakis, Linearized instability for nonlinear Schrödinger and Klein-Gordon equations,
Comm. Pure Appl. Anal., 41 (1988), 747–774.

[13] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of

symmetry I, J. Funct. Anal., 74 (1987), 160–197.
[14] S. Gustafson and I. M. Sigal, Mathematical Concepts of Quantum Mechanics (2nd ed.),

Springer-Verlag Berlin Heidelberg, 2011.

[15] G. Fibich, The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse,
Springer, 2015.

[16] A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the

wave functions, Duke Math. J., 46 (1979), 583–611.
[17] A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev.

Math. Phys., 13 (2001), 717–754.

http://www.ams.org/mathscinet-getitem?mr=MR3053771&return=pdf
http://dx.doi.org/10.1007/s00220-013-1684-3
http://www.ams.org/mathscinet-getitem?mr=MR1972870&return=pdf
http://dx.doi.org/10.1016/S0294-1449(02)00018-5
http://dx.doi.org/10.1016/S0294-1449(02)00018-5
http://www.ams.org/mathscinet-getitem?mr=MR2002047&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2368894&return=pdf
http://dx.doi.org/10.1137/050648389
http://dx.doi.org/10.1137/050648389
http://www.ams.org/mathscinet-getitem?mr=MR1835384&return=pdf
http://dx.doi.org/10.1002/cpa.1018
http://www.ams.org/mathscinet-getitem?mr=MR2027616&return=pdf
http://dx.doi.org/10.1142/S0129055X03001849
http://www.ams.org/mathscinet-getitem?mr=MR3180733&return=pdf
http://dx.doi.org/10.1090/S0002-9947-2014-05770-X
http://dx.doi.org/10.1090/S0002-9947-2014-05770-X
http://www.ams.org/mathscinet-getitem?mr=MR2143030&return=pdf
http://dx.doi.org/10.1063/1.1901345
http://dx.doi.org/10.1063/1.1901345
http://www.ams.org/mathscinet-getitem?mr=MR2094265&return=pdf
http://dx.doi.org/10.1002/cpa.20050
http://dx.doi.org/10.1002/cpa.20050
http://www.ams.org/mathscinet-getitem?mr=MR3180019&return=pdf
http://dx.doi.org/10.1080/00036811.2013.866227
http://dx.doi.org/10.1080/00036811.2013.866227
http://www.ams.org/mathscinet-getitem?mr=MR2187292&return=pdf
http://dx.doi.org/10.1142/S0129055X05002522
http://dx.doi.org/10.1142/S0129055X05002522
http://www.ams.org/mathscinet-getitem?mr=MR948770&return=pdf
http://dx.doi.org/10.1002/cpa.3160410602
http://www.ams.org/mathscinet-getitem?mr=MR901236&return=pdf
http://dx.doi.org/10.1016/0022-1236(87)90044-9
http://dx.doi.org/10.1016/0022-1236(87)90044-9
http://www.ams.org/mathscinet-getitem?mr=MR3012853&return=pdf
http://dx.doi.org/10.1007/978-3-642-21866-8
http://www.ams.org/mathscinet-getitem?mr=MR3308230&return=pdf
http://dx.doi.org/10.1007/978-3-319-12748-4
http://www.ams.org/mathscinet-getitem?mr=MR544248&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1841744&return=pdf
http://dx.doi.org/10.1142/S0129055X01000843


AN EDGE BIFURCATION IN 1D LINEARIZED NLS 3009

[18] T. Kapitula, Stability criterion for bright solitary waves of the perturbed cubic-quintic
Schrödinger equation, Physica D , 116 (1998), 95–120.

[19] T. Kapitula and B. Sandstede, Stability of bright solitary-wave solutions to perturbed non-

linear Schrödinger equations, Physica D , 124 (1998), 58–103.
[20] T. Kapitula and B. Sandstede, Edge bifurcations for near integrable systems via Evans func-

tions, SIAM J. Math. Anal., 33 (2002), 1117–1143.
[21] T. Kapitula and B. Sandstede, Eigenvalues and resonances using the Evans functions, Discrete

Contin. Dyn. Syst., 10 (2004), 857–869.

[22] D. Pelinovsky, Y. Kivshar and V. Afanasjev, Internal modes of envelope solitons, Physica D ,
116 (1998), 121–142.

[23] G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equa-

tions, Comm. Partial Differential Equations, 29 (2004), 1051–1095.
[24] W. Schlag, Stabile manifolds for an orbitally unstable nonlinear Schrödinger equation, Ann.

of Math., 169 (2009), 139–227.

[25] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Springer, 1999.
[26] V. Vougalter, On threshold eigenvalues and resonances for the linearized NLS equation, Math.

Model. Nat. Phenom., 5 (2010), 448–469.

[27] V. Vougalter, On the negative index theorem for the linearized NLS problem, Canad. Math.
Bull., 53 (2010), 737–745.

[28] V. Vougalter and D. Pelinovsky, Eigenvalues of zero energy in the linearized NLS problem,
Journal of Mathematical Physics, 47 (2006), 062701, 13pp.

[29] M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,

SIAM J. Math Anal., 16 (1985), 472–491.
[30] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolutions equa-

tions, Comm. Pure Appl. Math., 39 (1986), 51–68.

Received July 2015; revised September 2015.

E-mail address: colesmp@math.ubc.ca

E-mail address: gustaf@math.ubc.ca

http://www.ams.org/mathscinet-getitem?mr=MR1621904&return=pdf
http://dx.doi.org/10.1016/S0167-2789(97)00245-5
http://dx.doi.org/10.1016/S0167-2789(97)00245-5
http://www.ams.org/mathscinet-getitem?mr=MR1662530&return=pdf
http://dx.doi.org/10.1016/S0167-2789(98)00172-9
http://dx.doi.org/10.1016/S0167-2789(98)00172-9
http://www.ams.org/mathscinet-getitem?mr=MR1897705&return=pdf
http://dx.doi.org/10.1137/S0036141000372301
http://dx.doi.org/10.1137/S0036141000372301
http://www.ams.org/mathscinet-getitem?mr=MR2073938&return=pdf
http://dx.doi.org/10.3934/dcds.2004.10.857
http://www.ams.org/mathscinet-getitem?mr=MR1621908&return=pdf
http://dx.doi.org/10.1016/S0167-2789(98)80010-9
http://www.ams.org/mathscinet-getitem?mr=MR2097576&return=pdf
http://dx.doi.org/10.1081/PDE-200033754
http://dx.doi.org/10.1081/PDE-200033754
http://www.ams.org/mathscinet-getitem?mr=MR2480603&return=pdf
http://dx.doi.org/10.4007/annals.2009.169.139
http://www.ams.org/mathscinet-getitem?mr=MR1696311&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2662464&return=pdf
http://dx.doi.org/10.1051/mmnp/20105417
http://www.ams.org/mathscinet-getitem?mr=MR2761696&return=pdf
http://dx.doi.org/10.4153/CMB-2010-062-4
http://www.ams.org/mathscinet-getitem?mr=MR2239967&return=pdf
http://dx.doi.org/10.1063/1.2203233
http://www.ams.org/mathscinet-getitem?mr=MR783974&return=pdf
http://dx.doi.org/10.1137/0516034
http://www.ams.org/mathscinet-getitem?mr=MR820338&return=pdf
http://dx.doi.org/10.1002/cpa.3160390103
http://dx.doi.org/10.1002/cpa.3160390103
mailto:colesmp@math.ubc.ca
mailto:gustaf@math.ubc.ca

	1. Introduction
	2. Mathematical setup
	3. Some preliminaries
	4. Bifurcation analysis
	5. Comments on the computations
	Acknowledgments
	REFERENCES

