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1.4 marks Find all local maximum and minimum values for the function f(x) =
4x

x2 + 1
.
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2.4 marks Below is a sketch of the graph of f ′(x) (note that it is the graph of the derivative of
f(x)). Clearly label every x value at which f(x) has a local maximum, local minimum
or inflection point. Below the picture, justify each of your labels in one or two sentences.
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3.4 marks Suppose you are asked to construct a box out of a sheet of paper measuring 8.5 inches
by 8.5 inches by cutting off four corners of the sheet and folding along the dotted lines,
as in the diagram below.

 

If the four corner squares have a side length of x inches, the resulting box has a volume
of

V (x) = x(8.5− 2x)2

cubic inches. The derivative may be taken to be

V ′(x) = (8.5− 2x)(8.5− 6x).

Explain carefully how you may conclude that in order to construct a box of maximal
volume, you should cut off four corner squares of side length x = 8.5

6
inches.
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4. Let f(x) = sin(2x) + x.

(a)4 marks Determine where f(x) is concave up on the interval [0, π].

(b)1 mark Describe where f(x) is concave up on the interval (−∞,∞).
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5. Let f(x) = ex + 2x3.

(a)2 marks Use the Intermediate Value Theorem to show that f(x) has at least one root.

(b)2 marks Explain why f(x) is increasing on the interval (−∞,∞).

(c)2 marks Use the Mean Value Theorem or Rolle’s Theorem, along with your answer from
part (b), to show that f(x) cannot have two roots. (Hint: If there are two roots,
what might go wrong?)
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6. Complete the answers to the following true or false questions by providing a counterex-
ample or explanation as requested. (In the case of providing a counterexample, a picture
suffices.)

(a)1 mark The following statement is false. Provide a counterexample demonstrating that it
is false.

If a function is defined everywhere, increasing on (−∞, 0) and decreasing on
(0,∞), then the function has a global maximum at 0.

(b)1 mark The following statement is false. Provide a counterexample demonstrating that it
is false.

If f(0) = 0 and f(1) = 1, then there is a number c in the interval (0, 1) such
that f ′(c) = 1.

(c)1 mark The following statement is false. Provide a counterexample demonstrating that it
is false.

A critical point can never be an inflection point.

(d)2 marks The following statement is true. Explain why.

The sum of two decreasing functions is a decreasing function.
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7. For each of the following parts, sketch a continuous function with domain (0, 5) satisfying
the conditions:

(a)2 marks A function f(x) with a local maximum, a local minimum but no global maximum
and no global minimum.

(b)2 marks A function g(x) with g′(x) > 0 for all x 6= 2 and g′(2) undefined.

(c)3 marks A function h(x) with h′′(x) < 0 for all x 6= 3. Further, h′(3) does not exist and
h′(x) < 0 for x < 3.
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