
ASSIGNMENT 1·10 (Section 002) Due: Friday, November 8

There are two parts to this assignment. The first part is on WeBWorK — the link is available on the course
webpage. The second part consists of the questions on this page. You are expected to provide full solutions (in
full sentences) with complete arguments and justifications in a linear, coherent manner. You will be graded
on the correctness, clarity and elegance of your solutions. Your answers must be typed or very neatly written.
Your work must be your own and must be self-contained. Assignments must be stapled, with your name and
student number at the top of each page. The assignment is due at the beginning of class on the due date.

1. Let

f(x) =
sinx cosx

sinx+ cosx
.

Find the equation of the line tangent to f through the point (π2 , 0).

Solution

The slope of the tangent line through the point (π2 , 0) will be f ′(π2 ). We compute by using the quotient
rule

f ′(x) =
(sinx cosx)′ · (sinx+ cosx)− (sinx cosx) · (sinx+ cosx)′

(sinx+ cosx)2

=
(cos2 x− sin2 x) · (sinx+ cosx)− (sinx cosx) · (cosx− sinx)

(sinx+ cosx)2

where we have used product rule for (sinx cosx)′. We can simplify this expression by expanding

f ′(x) =
cos2 x sinx+ cos3 x− sin3 x− cosx sin2 x− sinx cos2 x+ sin2 x cosx

sin2 x+ 2 sinx cosx+ cosx2

=
cos3 x− sin3 x

1 + 2 sinx cosx
.

Now, as planned, we compute

f ′
(π

2

)
=

cos3
(
π
2

)
− sin3

(
π
2

)
1 + 2 sin

(
π
2

)
cos
(
π
2

)
=

0− 1

1 + 0
= −1.

So, the slope of the tangent line passing through point (π2 , 0) is -1. We can use this information to write
the equation of the tangent line in point-slope form

y − 0 = −1(x− π

2
)

or

y = −1(x− π

2
).

2. Recall that given a function, say f , we can think about its derivative, which we denote f ′(x) (providing
the function is differentiable). The derivative f ′(x) is itself a function and so conceivably we could take
its derivative (providing it is also differentiable). We call this new function the second derivative of f and
denote it by f ′′(x). In other words f ′′(x) = (f ′(x))′. For each part in this problem make sure you justify
your answer.



(a) Find a function f(x) such that

f ′′(x) = −f(x). (1)

(b) Find another function satisfying (1).

(c) Find infinitely many functions satisfying (1).

(d) Find a function satisfying (1) with the property that f(0) = 0 and f(π/2) = 2.

Solution

(a) We claim that f(x) = sinx satisfies (1). Observe f ′(x) = cosx and f ′′(x) = − sinx = −f(x).

(b) We can also take f(x) = cosx. Then f ′(x) = − sinx and so f ′′(x) = − cosx = −f(x).

(c) Notice that any multiple of sinx or cosx will also be a solution of (1). We could take, for example, the
functions n sinx where n = {1, 2, 3, . . .}. This gives infinitely many functions satisfying (1). We might
also notice that the sum of any two solutions of (1) is also a solution of (1). The most general solution is

f(x) = a sinx+ b cosx, where a, b ∈ R.

Observe,

f ′(x) = a cosx− b sinx

f ′′(x) = −a sinx− b cosx = −f(x)

(it turns out that there are no other solutions to our differential equation asside from functions that can
be written as above). Notice that if we take a = b = 0 we get f(x) = 0 which is a solution to (1). We
call this solution the trivial solution.

(d) Take f(x) = 2 sinx. Then f satisfies (1), as we have seen. As well f(0) = 2 sin(0) = 0 and
f(π/2) = 2 sin(π/2) = 2 as desired.

3. Let

f(x) =


(x2 + 1) sinx x < 0

g(x) 0 ≤ x ≤ π
cos2 x x > π

Find g(x) so that f is differentiable everywhere. Justify your answer.

Solution

If f is to be differentialble it must first be continuous. Note that (x2 + 1) sinx and cos2 x are both
continuous functions (they are compositions of continuous functions). We will also require g(x) to be
continous on (0, π). Moreoever we need f to be continous across 0 and π. In light of this we get the
following conditions

lim
x→0−

f(x) = lim
x→0+

f(x) and lim
x→π−

f(x) = lim
x→π+

f(x)

or rather

lim
x→0−

(x2 + 1) sinx = lim
x→0+

g(x) and lim
x→π−

g(x) = lim
x→π+

cos2 x.

However, all of these functions are continuous so we can evaluate these limits by direct substitution. This
gives us the following two conditions

g(0) = 0 and g(π) = 1.



With these conditions in place our function f will be continuous (the branches line up so there are no
jumps). However, not all continuous functions are differentiable; we need the branches of f to line up in a
smooth way (no corners). Function f will be differentiable if g′(0) is equal to the derivative of (x2+1) sinx
at 0 and g′(π) is equal to the derivative of cos2 x at π. We compute(

(x2 + 1) sinx
)′

= 2x sinx+ (x2 + 1) cosx

which gives 1 when x = 0. Hence g′(0) = 1. Similarly for the other side(
cos2 x

)′
= (cosx cosx)

′
= − sinx cosx− cosx sinx

which gives 0 when x = π. Hence g′(π) = 0. We have shown that any function g that is differentiable on
(0, π) and satisfies the four conditions

g(0) = 0, g(π) = 1, g′(0) = 1, g′(π) = 0

will make f differentiable everywhere. It remains to find such a function (there are infinitely many such
functions). We can hunt for a cubic function to do the job. The gerneral form of a cubic polynomial is

g(x) = ax3 + bx2 + cx+ d

with derivative

g′(x) = 3ax2 + 2bx+ c.

First require that

0 = g(0) = a(0)3 + b(0)2 + c(0) + d

this gives d = 0. Next we insist that

1 = g′(0) = 3a(0)2 + 2b(0) + c

and so c = 1. We have narrowed the search to finding a and b. The remaining two conditions give us the
following two equations

g(π) = 1 = aπ3 + bπ2 + π (2)

and

g′(π) = 0 = 3aπ2 + 2bπ + 1. (3)

We can use either substitution or elimination to solve this system of two equations with two variables.
We will use elimination. Multiply the first equation by 2 and the second by π to see

2− 2π = 2aπ3 + 2bπ2

−π = 3aπ3 + 2bπ2.

Subtracting the two yields,

2− π = −aπ3

or

a =
π − 2

π3
.



With a in hand we can solve for b by substituting back into (2)

1 =
π − 2

π3
π3 + bπ2 + π

1− π = π − 2 + bπ2

1− π − π + 2 = bπ2

b =
3− 2π

π2

So, the polynomial

g(x) =
π − 2

π3
x3 +

3− 2π

π2
x2 + x

will make f differentiable everywhere.

The procedure we just performed is similar to a technique called cubic spline. This technique uses
piecewise cubic functions to interpolate given data points in a ‘smooth’ way.

If cubic polynomials are not to your liking and you don’t mind trying to get a little fancy we can
try to patch up f with a trig function. Unfortunately attempts to stretch a sine function fail. The
function g(x) = sin (x/2) fails since g′(0) = 1/2 6= 1. As well, the function g(x) = 2 sin (x/2) fails since
g(π) = 2 6= 1.

What we can do is use a regular sine function to lift off from 0 and bring us to π/2 after which we continue
onwards with a constant function. The function we are suggesting looks like this

g(x) =

{
sinx 0 ≤ x ≤ π/2
1 π/2 < x ≤ π

Note that g(x) is differentiable on the interval (0, π). The only point of contention is π/2. Observe that
sin (π/2) = 1 so g(x) is continuous at π/2. Also the derivative of sinx at π/2 is cos (π/2) = 0 which
equals the derivative of the constant function 1. So g(x) is differentiable at π/2. We now claim that

f(x) =


(x2 + 1) sinx x < 0

g(x) 0 ≤ x ≤ π
cos2 x x > π

=


(x2 + 1) sinx x < 0

sinx 0 ≤ x ≤ π/2
1 π/2 < x ≤ π
cos2 x x > π

Is differentiable everywhere. This is the case since g satisfies the four conditions we derived earlier. That
is

g(0) = sin(0) = 0

g(π) = 1

g′(0) = cos(0) = 1

g′(π) = 0.

Hence we have found another g(x) that will do the job.


