
Mathematics 100 / 180 Formulas

What you must remember

Similar triangles

Two triangles T1, T2 are similar when

• (AAA — angle angle angle) The angles of T1 are the same as the angles of T2.

• (SSS — side side side) The ratios of the side lengths are the same. That is

A

a
=
B

b
=
C

c

• (SAS — side angle side) Two sides have lengths in the same ratio and the angle between
them is the same. For example

A

a
=
C

c
and angle β is same

Pythagoras

For a right-angled triangle the length of the hypotenuse is related to the lengths of the other
two sides by

(adjacent)2 + (opposite)2 = (hypotenuse)2

Trigonometry — definitions

sin θ =
opposite

hypotenuse
csc θ =

1

sin θ

cos θ =
adjacent

hypotenuse
sec θ =

1

cos θ

tan θ =
opposite

adjacent
cot θ =

1

tan θ
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Radians, arcs and sectors

For a circle of radius r and angle of θ radians:

• Arc length L(θ) = rθ.

• Area of sector A(θ) = θ
2
r2.

Trigonometry — graphs

sin θ cos θ tan θ

−π −π
2

π
2

π 3π
2

2π

−1

1

−π −π
2

π
2

π 3π
2

2π

−1

1

−π −π
2

π
2

π 3π
2

2π

Trigonometry — special triangles

From the above pair of special triangles we have

sin
π

4
=

1√
2

sin
π

6
=

1

2
sin

π

3
=

√
3

2

cos
π

4
=

1√
2

cos
π

6
=

√
3

2
cos

π

3
=

1

2

tan
π

4
=

1√
2

tan
π

6
=

1√
3

tan
π

3
=
√

3
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Trigonometry — simple identities

• Periodicity

sin(θ + 2π) = sin(θ) cos(θ + 2π) = cos(θ)

• Reflection

sin(−θ) = − sin(θ) cos(−θ) = cos(θ)

• Rotation by π/2

sin
(
π
2
− θ
)

= cos θ cos
(
π
2
− θ
)

= sin θ

• Pythagoras

sin2 θ + cos2 θ = 1

Trigonometry — add and subtract angles

• Sine

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

• Cosine

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

Inverse trigonometric functions

arcsinx arccosx arctanx

Domain: −1 ≤ x ≤ 1 Domain: −1 ≤ x ≤ 1 Domain: all real numbers

Range: −π
2
≤ arcsinx ≤ π

2
Range: 0 ≤ arccosx ≤ π Range: −π

2
< arctanx < π

2

−1 1

−π
2

π
2

−1 1

π
2

π

−π
2

π
2
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Since these functions are inverses of each other we have

arcsin(sin θ) = θ −π
2
≤ θ ≤ π

2
arccos(cos θ) = θ 0 ≤ θ ≤ π

arctan(tan θ) = θ −π
2
≤ θ ≤ π

2

and also

sin(arcsinx) = x −1 ≤ x ≤ 1

cos(arccosx) = x −1 ≤ x ≤ 1

tan(arctanx) = x any real x

Areas

• Area of a triangle

A =
1

2
bh =

1

2
ab sin θ

• Area of a circle

A = πr2

• Area of an elipse

A = πab

Volumes

• Volume of a cylinder

V = πr2h
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• Volume of a cone

V =
1

3
πr2h

• Volume of a sphere

V =
4

3
πr3
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What you should be able to derive
• Graphs of csc θ, sec θ and cot θ:

csc θ sec θ cot θ

−π −π
2

π
2

π 3π
2

2π−1

1

−π −π
2

π
2

π 3π
2

2π−1

1

−π −π
2

π
2

π 3π
2

2π

• More Pythagoras

sin2 θ + cos2 θ = 1
divide by cos2 θ7−−−−−−−−→ tan2 θ + 1 = sec2 θ

sin2 θ + cos2 θ = 1
divide by sin2 θ7−−−−−−−−→ 1 + cot2 θ = csc2 θ

• Sine — double angle (set β = α in sine angle addition formula)

sin(2α) = 2 sin(α) cos(α)

• Cosine — double angle (set β = α in cosine angle addition formula)

cos(2α) = cos2(α)− sin2(α)

= 2 cos2(α)− 1 (use sin2(α) = 1− cos2(α))

= 1− 2 sin2(α) (use cos2(α) = 1− sin2(α))

• Composition of trigonometric and inverse trigonometric functions:

cos(arcsinx) =
√

1− x2 sec(arctanx) =
√

1 + x2

and similar expressions.
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Stuff you don’t need to know. . .
but perhaps you might like to know.

Where do these identities come from?

Thales’ theorem

We want to get at right-angled triangles. A classic construction for this is to draw a triangle
inside a circle, so that all three corners lie on the circle and the longest side forms the diameter
of the circle. See the figure below in which we have scaled the circle to have radius 1 and the
triangle has longest side 2.

Thales theorem states that the angle at C is always a right-angle. The proof is quite straight-
forward and relies on two facts:

• the angles of a triangle add to π, and

• the angles at the base of an isosceles triangle are equal.

So we split the triangle ABC by drawing a line from the centre of the circle to C. This creates
two isosceles triangles OAC and OBC. Since they are isosceles, the angles at their bases α and
β must be equal (as shown). Adding the angles of the original triangle now gives

π = α + (α + β) + β = 2(α + β)

So the angle at C = π − (α + β) = π/2.

Pythagoras

Since trigonometry, at its core, is the study of lengths and angles in right-angled triangles, we
must include a result you all know well, but likely do not know how to prove.
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The lengths of the sides of any right-angled triangle are related by the famous result due to
Pythagoras

c2 = a2 + b2.

There are many ways to prove this, but we can do so quite simply by studying the following
diagram:

We start with a right-angled triangle with sides labeled a, b and c. Then we construct a square
of side-length a + b and draw inside it 4 copies of the triangle arranged as shown in the centre
of the above figure. The area in white is then a2 + b2. Now move the triangles around to create
the arrangement shown on the right of the above figure. The area in white is bounded by a
square of side-length c and so its area is c2. The area of the outer square didn’t change when the
triangles were moved, nor did the area of the triangles, so the white area cannot have changed
either. This proves a2 + b2 = c2.

Trigonometry

Angles — radians vs degrees

For mathematics, and especially in calculus, it is much better to measure angles in units called
radians rather than degrees. By definition, an arc of length θ on a circle of radius one subtends
an angle of θ radians at the center of the circle.

The circle on the left has radius 1, and the the arc swept out by an angle of θ radians has
length θ. Because a circle of radius one has circumference 2π we have

2π radians = 360◦ π radians = 180◦ π/2 radians = 90◦

π

3
radians = 60◦

π

4
radians = 45◦

π

6
radians = 30◦
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More generally, consider a circle of radius r. Let L(θ) denote the length of the arc swept out
by an angle of θ radians and let A(θ) denote the area of the sector (or wedge) swept out by the
same angle. Since the angle sweeps out θ/2π of a whole circle we have

L(θ) = 2πr · θ
2π

= θr and

A(θ) = πr2 · θ
2π

=
θ

2
r2

Definitions

The trigonometric functions are defined as ratios of the lengths of the sides of a right-angle
triangle as shown in the left of the diagram below . These ratios depend only on the angle θ.

sine cosine tangent

sin θ =
opposite

hypotenuse
cos θ =

adjacent

hypotenuse
tan θ =

opposite

adjacent
=

sin θ

cos θ

these are frequently abbreviated as

sin θ =
o

h
cos θ =

a

h
tan θ =

o

a

which gives rise to the mnemonic

SOH CAH TOA

If we scale the triangle so that they hypotenuse has length 1 then we obtain the diagram on the
right. In that case, sin θ is the height of the triangle, cos θ the length of its base and tan θ is the
length of the line tangent to the circle of radius 1 as shown.

Since the angle 2π sweeps out a full circle, the angles θ and θ + 2π are really the same.
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Hence all the trigonometric functions are periodic with period 2π. That is

sin(θ + 2π) = sin(θ) cos(θ + 2π) = cos(θ) tan(θ + 2π) = tan(θ)

The plots of these functions are shown below

sin θ cos θ tan θ

−π −π
2

π
2

π 3π
2

2π

−1

1

−π −π
2

π
2

π 3π
2

2π

−1

1

−π −π
2

π
2

π 3π
2

2π

The reciprocals of these functions also play important roles in trigonometry and calculus:

cosecant secant cotangent

csc θ =
1

sin θ
=

h

o
sec θ =

1

cos θ
=

h

a
cot θ =

1

tan θ
=

cos θ

sin θ
=

a

o

The plots of these functions are shown below

csc θ sec θ cot θ

−π −π
2

π
2

π 3π
2

2π−1

1

−π −π
2

π
2

π 3π
2

2π−1

1

−π −π
2

π
2

π 3π
2

2π

These reciprocal functions also have geometric interpretations:
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Since these are all right-angled triangles we can use Pythagoras to obtain the following identities:

sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ

Of these it is only necessary to remember the first

sin2 θ + cos2 θ = 1

The second can then be obtained by dividing this by cos2 θ and the third by dividing by sin2 θ.

Important triangles

Computing sine and cosine is non-trivial for general angles — we need Taylor series (or similar
tools) to do this. However there are some special angles (usually small fractions of π) for which
we can use a little geometry to help. Consider the following two triangles.

The first results from cutting a square along its diagonal, while the second is obtained by cutting
an equilateral triangle from one corner to the middle of the opposite side. These, together with
the angles 0, π

2
and π give the following table of values

θ sin θ cos θ tan θ csc θ sec θ cot θ

0 rad 0 1 0 DNE 1 DNE
π
2

rad 1 0 DNE 1 DNE 0

π rad 0 -1 0 DNE -1 DNE

π
4

rad 1√
2

1√
2

1
√

2
√

2 1

π
6

rad 1
2

√
3
2

1√
3

2 2√
3

√
3

π
3

rad
√
3
2

1
2

√
3 2√

3
2 1√

3

Some more simple identities

Consider the figure below
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The pair triangles on the left shows that there is a simple relationship between trigonometric
functions evaluated at θ and at −θ:

sin(−θ) = − sin(θ) cos(−θ) = cos(θ)

That is — sine is an odd function, while cosine is even. Since the other trigonometric functions
can be expressed in terms of sine and cosine we obtain

tan(−θ) = − tan(θ) csc(−θ) = − csc(θ) sec(−θ) = sec(θ) cot(−θ) = − cot(θ)

Now consider the triangle on the right — if we consider the angle π
2
− θ the side-lengths of the

triangle remain unchanged, but the roles of “opposite” and “adjacent” are swapped. Hence we
have

sin
(
π
2
− θ
)

= cos θ cos
(
π
2
− θ
)

= sin θ

Again these imply that

tan
(
π
2
− θ
)

= cot θ csc
(
π
2
− θ
)

= sec θ sec
(
π
2
− θ
)

= csc θ cot
(
π
2
− θ
)

= tan θ

We can go further. Consider the following diagram:

This implies that

sin(π − θ) = sin(θ) cos(π − θ) = cos(θ)

sin(π + θ) = − sin(θ) cos(π + θ) = − cos(θ)

From which we can get the rules for the other four trigonometric functions.
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Identities — add angles

We wish to explain the origins of the identity

sin(α + β) = sin(α) cos(β) + cos(α) sin(β).

A very geometric demonstration uses the figure below and an observation about areas.

• The left-most figure shows two right-angled triangles with angles α and β and both with
hypotenuse length 1.

• The next figure simply rearranges the triangles — translating and rotating the lower tri-
angle so that it lies adjacent to the top of the upper triangle.

• Now scale the lower triangle by a factor of q so that edges opposite the angles α and β are
flush. This means that q cos β = cosα. ie

q =
cosα

cos β

Now compute the areas of these (blue and red) triangles

Ared =
1

2
q2 sin β cos β

Ablue =
1

2
sinα cosα

So twice the total area is

2Atotal = sinα cosα + q2 sin β cos β

• But we can also compute the total area using the rightmost triangle:

2Atotal = q sin(α + β)

Since the total area must be the same no matter how we compute it we have

q sin(α + β) = sinα cosα + q2 sin β cos β

sin(α + β) =
1

q
sinα cosα + q sin β cos β

=
cos β

cosα
sinα cosα +

cosα

cos β
sin β cos β

= sinα cos β + cosα sin β
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as required.
We can obtain the angle addition formula for cosine by substituting α 7→ π/2−α and β 7→ −β

into our sine formula:

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) becomes

sin(π/2− α− β)︸ ︷︷ ︸
cos(α+β)

= sin(π/2− α)︸ ︷︷ ︸
cos(α)

cos(−β) + cos(π/2− α)︸ ︷︷ ︸
sin(α)

sin(−β)

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

where we have used sin(π/2− θ) = cos(θ) and cos(π/2− θ) = sin(θ).
It is then a small step to the formulas for the difference of angles. From the relation

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

we can substitute β 7→ −β and so obtain

sin(α− β) = sin(α) cos(−β) + cos(α) sin(−β)

= sin(α) cos(β)− cos(α) sin(β)

The formula for cosine can be obtained in a similar manner. To summarise

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

The formulas for tangent are a bit more work, but

tan(α + β) =
sin(α + β)

cos(α + β)

=
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β)− sin(α) sin(β)

=
sin(α) cos(β) + cos(α) sin(β)

cos(α) cos(β)− sin(α) sin(β)
· sec(α) sec(β)

sec(α) sec(β)

=
sin(α) sec(α) + sin(β) sec(β)

1− sin(α) sec(α) sin(β) sec(β)

=
tan(α) + tan(β)

1− tan(α) tan(β)

and similarly we get

tan(α− β) =
tan(α)− tan(β)

1 + tan(α) tan(β)
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Identities — double-angle formulas

If we set β = α in the angle-addition formulas we get

sin(2α) = 2 sin(α) cos(α)

cos(2α) = cos2(α)− sin2(α)

= 2 cos2(α)− 1 since sin2 θ = 1− cos2 θ

= 1− 2 sin2(α) since cos2 θ = 1− sin2 θ

tan(2α) =
2 tan(α)

1 + tan2(α)

=
2

cot(α) + tan(α)
divide top and bottom by tan(α)

Identities — extras

Sums to products

Consider the identities

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

If we add them together some terms on the right-hand side cancel:

sin(α + β) + sin(α− β) = 2 sin(α) cos(β).

If we now set u = α + β and v = α− β (ie α = u+v
2
, β = u−v

2
) then

sin(u) + sin(v) = 2 sin

(
u+ v

2

)
cos

(
u− v

2

)
This transforms a sum into a product. Similarly:

sin(u)− sin(v) = 2 sin

(
u− v

2

)
cos

(
u+ v

2

)
cos(u) + sin(v) = 2 cos

(
u+ v

2

)
cos

(
u− v

2

)
cos(u)− sin(v) = 2 sin

(
u+ v

2

)
sin

(
u− v

2

)
Products to sums

Again consider the identities

sin(α + β) = sin(α) cos(β) + cos(α) sin(β) sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

and add them together:

sin(α + β) + sin(α− β) = 2 sin(α) cos(β).
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Then rearrange:

sin(α) cos(β) =
sin(α + β) + sin(α− β)

2

In a similar way, start with the identities

cos(α + β) = cos(α) cos(β)− sin(α) sin(β) cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

If we add these together we get

2 cos(α) cos(β) = cos(α + β) + cos(α− β)

while taking their difference gives

2 sin(α) sin(β) = cos(α− β)− cos(α + β)

Hence

sin(α) sin(β) =
cos(α− β)− cos(α + β)

2

cos(α) cos(β) =
cos(α− β) + cos(α + β)

2

Inverse trigonometric functions

In order to construct inverse trigonometric functions we first have to restrict their domains so
as to make them one-to-one (or injective). We do this as shown below
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sin θ cos θ tan θ

Domain: −π
2
≤ θ ≤ π

2
Domain: 0 ≤ θ ≤ π Domain: −π

2
< θ < π

2

Range: −1 ≤ sin θ ≤ 1 Range: −1 ≤ cos θ ≤ 1 Range: all real numbers

−π
2

π
2

−1

1

π
2

π

−1

1

−π −π
2

arcsinx arccosx arctanx

Domain: −1 ≤ x ≤ 1 Domain: −1 ≤ x ≤ 1 Domain: all real numbers

Range: −π
2
≤ arcsinx ≤ π

2
Range: 0 ≤ arccosx ≤ π Range: −π

2
< arctanx < π

2

−1 1

−π
2

π
2

−1 1

π
2

π

−π
2

π
2

Since these functions are inverses of each other we have

arcsin(sin θ) = θ −π
2
≤ θ ≤ π

2
arccos(cos θ) = θ 0 ≤ θ ≤ π

arctan(tan θ) = θ −π
2
≤ θ ≤ π

2

and also

sin(arcsinx) = x −1 ≤ x ≤ 1

cos(arccosx) = x −1 ≤ x ≤ 1

tan(arctanx) = x any real x

We can also other trig identities to determine other combinations of these functions and inverses.
For example, in order to simplify f(x) = cos(arcsin x) proceed as follows.

• First notice that we could simplify it if we can rewrite cos(arcsinx) in terms of sin(arcsinx) =
x.
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• To do this we make use of one of the Pythagorean identities

sin2 θ + cos2 θ = 1

cos θ = ±
√

1− sin2 θ

• Thus (setting θ = arcsinx in the above)

f(x) = ±
√

1− sin2 θ.

• To determine which branch we should use we need to consider the doman and range of
arcsinx:

Domain: − 1 ≤ x ≤ 1 Range: − π

2
≤ arcsinx ≤ π

2
Thus we are applying cosine to an angle that always lies between −π

2
and π

2
. Cosine is

non-negative on this range. Hence we should take the positive branch and

f(x) = cos(arcsin x) =
√

1− sin2 θ =
√

1− sin2(arcsinx)

=
√

1− x2

In a very similar way we can simplify tan arccosx.

• First notice that we could simplify it if we can rewrite tan(arccosx) in terms of cos(arccosx) =
x.

• To do this we make use of one of the Pythagorean identities

tan2 θ + 1 = sec2 θ =
1

cos2 θ

tan θ = ±
√

1/ cos2 θ − 1

• Thus (setting θ = arccosx in the above)

tan arccosx = ±
√

1/ cos2(arccosx)− 1.

• To determine which branch we should use we need to consider the doman and range of
arccosx:

Domain: − 1 ≤ x ≤ 1 Range: 0 ≤ arccosx ≤ π

Thus we are applying cosine to an angle that always lies between −π
2

and π
2
. Cosine is

non-negative on this range. Hence we should take the positive branch and

f(x) = cos(arcsin x) =
√

1− sin2 θ =
√

1− sin2(arcsinx)

=
√

1− x2

Completing the 9 possibilities gives:

sin(arcsinx) = x sin(arccosx) =
√

1− x2 sin(arctanx) =
x√

1 + x2

cos(arcsinx) =
√

1− x2 cos(arccosx) = x cos(arctanx) =
1√

1 + x2

tan(arcsinx) =
x√

1− x2
tan(arccosx) =

√
1− x2
x

tan(arctanx) = x
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Geometry

Areas

• Area of a triangle

A =
1

2
bh =

1

2
ab sin θ

• Area of a circle

A = πr2

• Area of an elipse

A = πab

Volumes

• Volume of a cylinder

V = πr2h

• Volume of a cone

V =
1

3
πr2h

• Volume of a sphere

V =
4

3
πr3

Where do the sine and cosine laws for triangles come from

We do not actually need you to remember these, but we can explain how they arise.
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Cosine law or Law of cosines

c2 = a2 + b2 − 2ab cos γ

Consider the triangle on the left. Now draw a perpendicular line from the side of length c to the
opposite corner as shown. This demonstrates that

c = a cos β + b cosα

Multiply this by c to get an expression for c2:

c2 = ac cos β + bc cosα

Doing similarly for the other corners gives

a2 = ac cos β + ab cos γ

b2 = bc cosα + ab cos γ

Now combining these:

a2 + b2 − c2 = (bc− bc) cosα + (ac− ac) cos β + 2ab cos γ

= 2ab cos γ

as required.

Sine law or Law of sines

a

sinα
=

b

sin β
=

c

sin γ
= R

This rule is best understood by computing the area of the triangle using the formula A = 1
2
ab sin θ

seen above. Doing this three ways gives

2A = bc sinα

2A = ac sin β

2A = ab sin γ

Dividing these expressions by abc gives

2A

abc
=

sinα

a
=

sin β

b
=

sin γ

c
as required.
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Where does the formula for the area of a circle come from

Typically when we come across π for the first time it is as the ratio of the circumference of a
circle to its diameter

π =
C

d
=
C

2r

Indeed this is typically the first definition we see of π. It is easy to build an intuition that the
area of the circle should be propotional to the square of its radius. For example we can draw the
largest possible square inside the circle (an inscribed square) and the smallest possible square
outside the circle (a circumscribed square):

The smaller square has side-length
√

2r and the longer has side-length 2r. Hence

2r2 ≤ A ≤ 4r2 or 2 ≤ A

r2
≤ 4

That is, the area of the circle is between 2 and 4 times the square of the radius. What is perhaps
less obvious (if we had not been told this in school) is that the constant of propotionality for
area is also π:

π =
A

r2
.

We will show this using Archimedes’ proof. He makes use of these inscribed and circumscribed
polygons to make better and better approximations of the circle. The steps of the proof are
somewhat involved and the starting point is to rewrite the area of a circle as

A =
1

2
Cr

This suggests that this area is the same as that of a triangle of height r and base length C

T =
1

2
Cr
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Archimedes’ proof then demonstrates that indeed this triangle and the circle have the same area.
It relies on a “proof by contradiction” — showing that T < A and T > A cannot be true and
so the only possibility is that A = T .

We will first show that T < A cannot happen. Construct an n-sided “inscribed” polygon as
shown below:

Let pn be the inscribed polygon as shown.

We need 4 steps.

1. The area of pn is smaller than that of the circle — this follows since we can construct pn
by cutting slices from the circle.

2. Let En be the difference between the area of the circle and pn: En = A − A(pn) (see the
left of the previous figure). By the previous point we know En > 0. Now as we increase
the number of sides, this difference becomes smaller. To be more precise

E2n ≤
1

2
En.

The error En is made up of n “lobes”. In the centre-left of the previous figure we draw
one such lobe and surround it by a rectangle of dimensions a× 2b — we could determine
these more precisely using a little trigonometry, but it is not necessary.

This diagram shows the lobe is smaller than the rectangle of base 2b and height a Since
there are n copies of the lobe, we have

En ≤ n× 2ab rewrite as
En
2
≤ nab

Now draw in the polygon p2n and consider the associated “error” E2n. If we focus on the
two lobes shown then we see that the area of these two new lobes is equal to that of the
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old lobe (shown in centre-left) minus the area of the triangle with base 2b and height a
(drawn in purple). Since there are n copies of this picture we have

E2n = En − nab now use that nab > En/2

< En −
En
2

=
En
2

3. The area of pn is smaller than T . To see this decompose pn into n isosceles triangles. Each
of these has base shorter than C/n; the straight line is shorter than the corresponding arc
— though strictly speaking we should prove this. The height of each triangle is shorter
than r. Thus

A(pn) = n× 1

2
(base)× (height)

≤ n× Cr

2n
= T

4. If we assume that A < T , then A− T = d where d is some positive number. However we
know from point 2 that we can make n large enough so that En < d (each time we double
n we halve the error). But now we have a contradiction since we have just shown that

En = A− A(pn) ≤ A− T which implies that

A(pn) ≥ T.

Thus we cannot have T < A.
If we now assume that T > A we will get a similar contradiction by a similar construction.

Now we use regular n-sided circumscribed polygons, Pn.

The proof can be broken into 4 similar steps.

1. The area of Pn is greater than that of the circle — this follows since we can construct the
circle by trimming the polygon Pn.
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2. Let En be the difference between the area of the polygon and the circle: En = A(Pn)−A
(see the left of the previous figure). By the previous point we know En > 0. Now as we
increase the number of sides, this difference becomes smaller. To be more precise we will
show

E2n ≤
1

2
En.

The error En is made up of n “lobes”. In the centre-left of the previous figure we draw one
such lobe. Let Ln denote the area of one of these lobes, so En = nLn. In the centre of the
previous figure we have labelled this lobe carefully and also shown how it changes when
we create the polygon P2n. In particular, the original lobe is bounded by the straight lines
~ad, ~af and the arc f̂ bd. We create P2n from Pn by cutting away the corner triangle 4aec.
Accordingly the lines ~ec and ~ba are orthogonal and the segments |bc| = |cd|.
By the construction of P2n from Pn, we have

2L2n = Ln − A(4aec) or equivalently L2n =
1

2
Ln − A(4abc)

And additionally

L2n ≤ A(4bcd)

Now consider the triangle 4abd (centre-right of the previous figure) and the two triangles

within it 4abc and 4bcd. We know that ~ab and ~cb form a right-angle. Consequently ~ac is
the hypotenuse of a right-angled triangle, so |ac| > |bc| = |cd|. So now, the triangles 4abc
and 4bcd have the same heights, but the base of ~ac is longer than ~cd. Hence the area of
4abc is strictly larger than that of 4bcd.

Thus we have

L2n ≤ A(4bcd) < A(4abc)

But now we can write

L2n =
1

2
Ln − A(4abc) < 1

2
Ln − L2n rearrange

2L2n <
1

2
Ln there are n such lobes, so

2nL2n <
n

2
Ln since En = nLn, we have

E2n <
1

2
En which is what we wanted to show.

3. The area of Pn is greater than T . To see this decompose Pn into n isosceles triangles. The
height of each triangle is r, while the base of each is longer than C/n (this is a subtle point
and its proof is equivalent to showing that tan θ > θ). Thus

A(Pn) = n× 1

2
(base)× (height)

≥ n× Cr

2n
= T
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4. If we assume that T > A, then T − A = d where d is some positive number. However we
know from point 2 that we can make n large enough so that En < d (each time we double
n we halve the error). But now we have a contradiction since we have just shown that

En = A(Pn)− A ≤ T − A which implies that

A(pn) ≤ T.

Thus we cannot have T > A. The only possibility that remains is that T = A.

Where do these volume formulas come from

We can establish the volumes of cones and spheres from the formula for the volume of a cylinder
and a little work with limits and some careful summations. We first need a few facts.

• Every square number can be written as a sum of consecutive odd numbers. More precisely

n2 = 1 + 3 + . . . (2n− 1)

• The sum of the first n positive integers is 1
2
n(n+ 1). That is

1 + 2 + 3 + · · ·+ n =
1

2
n(n+ 1)

• The sum of the squares of the first n positive integers is 1
6
n(n+ 1)(2n+ 1).

12 + 22 + 32 + · · ·+ n2 =
1

6
n(n+ 1)(2n+ 1)

We will not give completely rigorous proofs of the above identities (since we are not going
to assume that the reader knows mathematical induction), rather we will explain them using
pictorial arguments. The first two of these we can explain by some quite simple pictures:

We see that we can decompose any square of unit-squares into a sequence of strips, each of which
consists of an odd number of unit-squares. This is really just from the fact that

n2 − (n− 1)2 = 2n− 1

Similarly, we can represent the sum of the first n integers as a triangle of unit squares as shown. If
we make a second copy of that triangle and arrange it as shown, it gives a rectangle of dimensions
n by n + 1. Hence the rectangle, being exactly twice the size of the original triangle, contains
n(n+ 1) unit squares.

The explanation of the last formula takes a little more work and a carefully constructed
picture:
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Let us break these pictures down step by step

• Leftmost represents the sum of the squares of the first n integers.

• Centre — We recall from above that each square number can be written as a sum of
consecutive odd numbers, which have been represented as coloured bands of unit-squares.

• Make three copies of the sum and arrange them carefully as shown. The first and third
copies are obvious, but the central copy is rearranged considerably; all the bands of the
same lengths have been arranged them into rectangles as shown.

Putting everything from the three copies together creates a rectangle of dimensions (2n+
1)× (1 + 2 + 3 + · · ·+ n).

We know (from above) that 1 + 2 + 3 + · · ·+ n = 1
2
n(n+ 1) and so

(12 + 22 + · · ·+ n2) =
1

3
× 1

2
n(n+ 1)(2n+ 1)

as required.
Now we can start to look at volumes. Let us start with the volume of a cone; consider the

figure below. We bound the volume of the cone above and below by stacks of cylinders. The
cross-sections of the cylinders and cone are also shown.
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To obtain the bounds we will construct two stacks of n cylinders, C1, C2, . . . , Cn. Each cylinder
has height h/n and radius that varies with height. In particular, we define cylinder Ck to have
height h/n and radius k × r/n. This radius was determined using similar triangles so that
cylinder Cn has radius r. Now cylinder Ck has volume

Vk = π × radius2 × height = π

(
kr

n

)2

· h
n

=
πr2h

n3
k2

We obtain an upper bound by stacking cylinders C1, C2, . . . , Cn as shown. This object has
volume

V = V1 + V2 + . . . Vn

=
πr2h

n3

(
12 + 22 + 32 + · · ·+ n2

)
=
πr2h

n3
· n(n+ 1)(2n+ 1)

6

A similar lower bound is obtained by stacking cylinders C1, . . . , Cn−1 which gives a volume of

V = V1 + V2 + . . . Vn−1

=
πr2h

n3

(
12 + 22 + 32 + · · ·+ (n− 1)2

)
=
πr2h

n3
· (n− 1)(n)(2n− 1)

6

Thus the true volume of the cylinder is bounded between

πr2h

n3
· (n− 1)(n)(2n− 1)

6
≤ correct volume ≤ πr2h

n3
· n(n+ 1)(2n+ 1)

6

Page 27



Mathematics 100 / 180 Formulas

We can now take the limit as the number of cylinders, n, goes to infinity. The upper bound
becomes

lim
n→∞

πr2h

n3

n(n+ 1)(2n+ 1)

6
=
πr2h

6
lim
n→∞

n(n+ 1)(2n+ 1)

n3

=
πr2h

6
lim
n→∞

(1 + 1/n)(2 + 1/n)

1

=
πr2h

6
× 2

=
πr2h

3

The other limit is identical, so by the squeeze theorem we have

Volume of cone =
1

3
πr2h

Now the sphere — though we will do the analysis for a hemisphere of radius R. Again we
bound the volume above and below by stacks of cylinders. The cross-sections of the cylinders
and cone are also shown.

To obtain the bounds we will construct two stacks of n cylinders, C1, C2, . . . , Cn. Each cylinder
has height h/n and radius that varies with its position in the stack. To describe the position,
define

yk = k × h

n

That is, yk, is k steps of distance h
n

from the top of the hemisphere. Then we set the kth cylinder,
Ck to have height R/n and radius rk given by

r2k = R2 − (R− yk)2 = R2 −R2(1− k/n)2

= R2(2k/n− k2/n2)
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as shown in the top-right and bottom-left illustrations. The volume of Ck is then

Vk = π × radius2 × height = π ×R2
(
2k/n− k2/n2

)
× R

n

= πR3 ·
(

2k

n2
− k2

n3

)
We obtain an upper bound by stacking cylinders C1, C2, . . . , Cn as shown. This object has

volume

V = V1 + V2 + . . . Vn

= πR3 ·
(

2

n2
(1 + 2 + 3 + · · ·+ n)− 1

n3

(
12 + 22 + 32 + · · ·+ n2

))
Now recall from above that

1 + 2 + 3 + · · ·+ n =
1

2
n(n+ 1) 12 + 22 + 32 + · · ·+ n2 =

1

6
n(n+ 1)(2n+ 1)

so

V = πR3 ·
(
n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
Again, a lower bound is obtained by stacking cylinders C1, . . . , Cn−1 and a similar analysis

gives

V = πR3 ·
(
n(n− 1)

(n− 1)2
− n(n− 1)(2n− 1)

6(n− 1)3

)
Thus the true volume of the hemisphere is bounded between

πR3 ·
(
n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
≤ correct volume ≤ πR3 ·

(
n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
We can now take the limit as the number of cylinders, n, goes to infinity. The upper bound
becomes

lim
n→∞

πR3 ·
(
n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
= πR2

(
lim
n→∞

n(n+ 1)

n2
− n(n+ 1)(2n+ 1)

6n3

)
= πR3

(
1− 2

6

)
=

2

3
πR3.

The other limit is identical, so by the squeeze theorem we have

Volume of hemisphere =
2

3
πR3 and so

Volume of sphere =
4

3
πR3
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