1. Find the third degree Maclaurin polynomial for $f(x)=\sqrt{1+x}$.

Solution: Since $f(x)=(1+x)^{1 / 2}$, we have $f^{\prime}(x)=(1 / 2)(1+x)^{-1 / 2}, f^{\prime \prime}(x)=(-1 / 4)(1+x)^{-3 / 2}$, and $f^{\prime \prime \prime}(x)=(3 / 8)(1+x)^{-5 / 2}$. So, $f(0)=1, f^{\prime}(0)=1 / 2, f^{\prime \prime}(0)=-1 / 4$, and $f^{\prime \prime \prime}(0)=3 / 8$, and the third-degree Maclaurin polynomial is

$$
T_{3}(x)=1+(1 / 2) x-(1 / 4) x^{2} / 2!+(3 / 8) x^{3} / 3!=1+x / 2-x^{2} / 8+x^{3} / 16
$$

