3. If $f(x)=\left(1+e^{x}\right)^{2}$, show that $f^{(k)}(0)=2+2^{k}$ for any k. Write the Maclaurin polynomial of degree n for this function.
Solution: We have $f^{\prime}(x)=2 e^{x}\left(1+e^{x}\right)$ using the Chain Rule. We can rewrite $f^{\prime}(x)$ as $2\left(e^{x}+e^{2 x}\right)$, and differentiating again gives $f^{\prime \prime}(x)=2\left(e^{x}+2 e^{2 x}\right), f^{\prime \prime \prime}(x)=2\left(e^{x}+4 e^{2 x}\right)$, and in general $f^{(k)}(x)=$ $2\left(e^{x}+2^{k-1} e^{2 x}\right)$ for $k \geq 1$. So, for $k \geq 1, f^{(k)}(0)=2\left(1+2^{k-1}\right)=2+2^{k}$. Since $f(0)=4$, the Maclaurin polynomial of degree n is

$$
T_{n}(x)=4+f^{(1)}(0) x+f^{(2)}(0) x^{2} / 2!+\cdots+f^{(n)}(0) x^{n} / n!=4+4 x+3 x^{2}+\cdots+\left(2+2^{n}\right) x^{n} / n!
$$

