1. Find the second degree Taylor polynomial about $a=10$ for $f(x)=1 / x$ and use it to compute $1 / 10.05$ to as many decimal places as is justified by this approximation.
Solution: Since $f^{\prime}(x)=-1 / x^{2}$ and $f^{\prime \prime}(x)=2 / x^{3}, f(10)=1 / 10, f^{\prime}(10)=-1 / 100$, and $f^{\prime \prime}(10)=1 / 500$, and so

$$
T_{2}(x)=1 / 10-(x-10) / 100+(x-10)^{2} / 1000
$$

Also, $f^{\prime \prime \prime}(x)=-6 / x^{4}$, and we have $\left|f^{\prime \prime \prime}(t)\right|=6 / t^{4} \leq 6 / 10^{4}$ for all t in the interval [10, 10.05]. Taking $M=6 / 10^{4}$, we have

$$
\left|R_{2}(10.05)\right| \leq\left(6 / 10^{4}\right)(10.05-10)^{3} / 3!=1 /\left(10^{4} \cdot 20^{3}\right)=(1 / 8) \cdot 10^{-7}
$$

We have $T_{2}(10.05)=1 / 10-.05 / 100+(.05)^{2} / 1000=0.0995025$. Since the error bound above is less than $(0.5) \cdot 10^{-7}$, we can assert that $1 / 10.05 \approx 0.0995025$ to 7 decimal places.

