1. Find the second degree Taylor polynomial about a = 10 for f(x) = 1/x and use it to compute 1/10.05 to as many decimal places as is justified by this approximation.

Solution: Since $f'(x) = -1/x^2$ and $f''(x) = 2/x^3$, f(10) = 1/10, f'(10) = -1/100, and f''(10) = 1/500, and so

$$T_2(x) = 1/10 - (x - 10)/100 + (x - 10)^2/1000$$

Also, $f'''(x) = -6/x^4$, and we have $|f'''(t)| = 6/t^4 \le 6/10^4$ for all t in the interval [10, 10.05]. Taking $M = 6/10^4$, we have

$$|R_2(10.05)| \le (6/10^4)(10.05 - 10)^3/3! = 1/(10^4 \cdot 20^3) = (1/8) \cdot 10^{-7}$$

We have $T_2(10.05) = 1/10 - .05/100 + (.05)^2/1000 = 0.0995025$. Since the error bound above is less than $(0.5) \cdot 10^{-7}$, we can assert that $1/10.05 \approx 0.0995025$ to 7 decimal places.