3. Show that the approximation

$$
e=1+1+\frac{1}{2!}+\cdots+\frac{1}{7!}
$$

gives the value of e to within an error of 8×10^{-5}.
Solution: The given approximation is the 7th-degree Maclaurin polynomial for e^{x} evaluated at $x=1$. Since the 8th derivative of e^{x} is e^{x}, and the maximum (absolute) value of this 8th derivative on the interval $[0,1]$ is e, the approximation has error at most $e \cdot(1-0)^{8} / 8!=e / 40320$. Since $e<3$, the error is $<3 / 40320$, which is $<8 \cdot 10^{-5}$ as required.

