Math 190 Homework 1: Solutions

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner. Your work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page.

Questions:

1. Find all $x \in \mathbb{R}$ such that

$$
x^{4}-2 x^{2}-1=0 .
$$

Solution: Solving a general quartic equation is a difficult task. We notice, however, that this special quartic is lacking odd powers of x. We can take advantage of this nicety by making the substitution $u=x^{2}$. In light of this our equation is transformed to

$$
u^{2}-2 u-1=0 .
$$

We can solve the above quadratic equation by means of the quadratic formula. That is

$$
\begin{aligned}
u & =\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)} \\
& =\frac{2 \pm \sqrt{8}}{2} \\
& =\frac{2 \pm 2 \sqrt{2}}{2} \\
& =1 \pm \sqrt{2} .
\end{aligned}
$$

Having successfully found u we turn our attention to finding x. We would like to write

$$
x= \pm \sqrt{u}= \pm \sqrt{1 \pm \sqrt{2}}
$$

however we are only interested in real values for x. Observe that $\sqrt{2}>1$ and so $1-\sqrt{2}<0$. Since there is no real number which is the square root of a negative number we must eliminate two of our four above solutions. Therefore two our values for x are

$$
x= \pm \sqrt{1+\sqrt{2}} .
$$

A quick sketch of the graph (not required) reveals that indeed to do expect two solutions:

2. Find all (real) zeros of

$$
g(x)=\left\{\begin{array}{ll}
x^{2}-9, & x \leq 0 \\
-\frac{1}{3}(x-5)+1, & x>0
\end{array} .\right.
$$

Consider sketching the graph of g.
Solution: Let us find the zeros of each branch. First we solve

$$
\begin{aligned}
x^{2}-9 & =0 \\
(x-3)(x+3) & =0
\end{aligned}
$$

which yields $x=-3$ and $x=3$. It is true that $g(-3)=0$ since $-3<0$. We do not, however, have $g(3)=0$ since for $x>0$ we would select the second branch. Now we solve

$$
\begin{aligned}
-\frac{1}{3}(x-5)+1 & =0 \\
-\frac{1}{3}(x-5) & =-1 \\
x-5 & =3 \\
x & =8 .
\end{aligned}
$$

Since $8>0$ we do in fact have $g(8)=0$. All together our two zeros are $x=-3$ and $x=8$. A quick sketch of the graph (not required) confirms that we should be expecting two zeros:

3. Find all real t such that the function

$$
f(x)= \begin{cases}2 x+3, & x \geq t \\ 2 x^{2}+x-5, & x<t\end{cases}
$$

is continuous. Support your answer with one or more pictures.
Solution: To ensure that f is continuous we want both branches to line up at $x=t$. If we plot both branches for all values of x we see that we expect two acceptable values of t.

To further emphasize this point (not required) we can observe that taking $t=0$ will give a graph that is not continuous

In light of the above discussion we ensure that both branches are equal at the point $x=t$. We therefore solve $2 t+3=2 t^{2}+t-5$ or rather $0=2 t^{2}-t-8$. Employing the quadratic formula we see

$$
\begin{aligned}
& t=\frac{1 \pm \sqrt{(-1)^{2}-4(2)(8)}}{2(2)} \\
& t=\frac{1 \pm \sqrt{65}}{4} .
\end{aligned}
$$

And so we have achieved both desired values for t. We can observe the following two graphs to see the continuity of f :

4. The absolute value function is defined as

$$
|x|=\left\{\begin{array}{rl}
x, & x \geq 0 \\
-x, & x<0
\end{array} .\right.
$$

(a) Plot $|x|$.
(b) Plot $g(x)=|3 x-7|$.
(c) Write g as a piecewise function.

Solution: Bellow are the graphs of $y=x$ (blue) and $y=3 x-7$ (red)

The absolute value will make any negative value positive and so we see the graphs of $y=|x|$ (blue) and $y=|3 x-7|$ (red)

To find $g(x)$ as a piecewise function we note that if $3 x-7 \geq 0$ than the absolute value will have no effect. That is $g(x)=3 x-7$ when $3 x-7 \geq 0$ or rather when $x \geq 7 / 3$. On the other hand if $3 x-7$ is negative than $|3 x-7|=-(3 x-7)$ a positive value. Therefore $g(x)=-(3 x-7)$ when $x<7 / 3$. Putting this together reads

$$
g(x)=\left\{\begin{array}{cc}
3 x-7, & x \geq 7 / 3 \\
-(3 x-7), & x<7 / 3
\end{array} .\right.
$$

Alternatively one can pull the branches off the graph by finding the equation of each line and where they hit the x-axis.
5. Consider the function

$$
f(x)=\frac{1}{\sqrt{x+1}-1} .
$$

(a) Find the domain of function f.
(b) The range of a function is the set of all possible output values of said function. Determine the range of f.
Solution: In order for $f(x)$ to make sense we require that $x+1 \geq 0$ and that $\sqrt{x+1}-1 \neq 0$. The former avoids taking the square root of a negative number and the latter avoids dividing by zero. Our constraint that $x+1 \geq 0$ implies that $x \geq-1$. For the other condition we solve

$$
\begin{aligned}
\sqrt{x+1}-1 & \neq 0 \\
\sqrt{x+1} & \neq 1 \\
x+1 & \neq 1^{2} \\
x & \neq 0 .
\end{aligned}
$$

Putting our two conditions together we see the domain of f :

$$
\{x \in \mathbb{R}: x \geq-1 \text { and } x \neq 0\}
$$

which can also be written as

$$
[-1,0) \cup(0, \infty)
$$

To establish the range of f we must think about the possible output values for various parts of the function. Notice that f is a composition of the two functions $\sqrt{x+1}-1$ (inside) and $1 / x$ (outside). It is our intention to find the range of $\sqrt{x+1}-1$ and then think about what happens when those output values are inputted to $1 / x$. We know that $\sqrt{x+1} \geq 0$ since the output from a square root function is always positive. In fact $\sqrt{x+1}$ will take all positive values: the range of $\sqrt{x+1}$ is $[0, \infty)$. We can subtract 1 from both sides of our inequality to find the following information about the denominator: $\sqrt{x+1}-1 \geq-1$. Moreover, the range of the function $\sqrt{x+1}-1$ is $[-1, \infty)$. This fact can also be obtained from plotting the graph of $\sqrt{x+1}-1$ using transformations.

We now must think about what happens when we take all values in $[-1, \infty)$ and feed them into the function $1 / x$. Observing the graph of $1 / x$ we see that input values of $(0, \infty)$ will yield as output all values in $(0, \infty)$.

We also notice that for input values of $[-1,0)$ the function $1 / x$ will output all values in $(-\infty,-1]$. Putting everything together we see the range of f as

$$
(-\infty,-1] \cup(0, \infty) .
$$

By the way, the graph of $f(x)$ looks like this:

