Math 190 Homework 3: Solutions

The assignment is due at the beginning of class on the due date. You are expected to provide full
solutions, which are laid out in a linear coherent manner. Your work must be your own and must
be self-contained. Your assignment must be stapled with your name and student number at the top
of the first page.

Questions:
1. Find all x satisfying

In(—z+1)+1In(6) =e
Solution: Let us use logarithm rules to rewrite this equation in the following form

In(—z + 1) + In(6)
In (6(—z+1))
In(—6x +6) =e.

e

e

At this point we consider both sides to the power of e and so cancel the logarithm, recalling
that e® and Inz are inverses. Observe

pIn(—62+6) _ e
—6x 4 6 = €°
—6z =¢€“—6
6 — e
T 7%

where we have finished the problem after some simple manipulation.

2. Consider
f(:L‘) — 6m1n(m+2)'
(a) Find the domain of f.
(b) Find all real x so that f(z) = 1.

Solution: (a) To find the domain of this function let us investigate the functions components.
There is no problem with the function e”; it is defined for all values of . Additionally, mul-
tiplying a number by z will produce a sensible number. In this way we direct our attention
to In(z 4 2) in terms of domain considerations. The function In(z + 2) does not exist (in the
sense of real numbers) for all input values of z. Recall that the input of the logarithm must be
positive. Therefore we insist that = + 2 > 0 or rather that £ > —2 and so behold the range

{reR:z>-2}
which can also be denoted as

(—2,00).



(b) We wish to find real x satisfying
1= f(z) = e"In(@+2),
Let us start by taking the natural logarithm of both sides. This yields
In(1) =1In (e"" ln(“'Q)) .
Recalling that In(1) = 0 and that Inz and e® are function inverses we find
0=zln(x+2).

The above equation will be zero under two circumstances. Firstly, if © = 0 and secondly if
In(z + 2) = 0. The second equation is satisfied when (and only when) x 4+ 2 = 1 since 1 is the
only zero of Inx (think of the graph of Inz). In this way we achieve our two solutions =z = 0
and z = —1. Note that both of our solutions are in the domain of f(x).

. Find all real x satisfying
e 4 e® —6=0.

Solution: The key to this problem is recognizing this equation as a quadratic equation. Using
our exponent rules we can rewrite the above as

(e®)? +e® — 6 = 0.
If we like we can make the substitution u = e® to make the idea especially clear
w4+ u—6=0
(u+3)(u—2)=0
(e =2)(e*+3)=0
where we have achieved the above after some factoring and eliminating u. We therefore inves-

tigate both e — 2 = 0 and e* + 3 = 0. Let us solve the first, we rearrange and then apply the
natural logarithm

e*—2=0
er =2
In(e®) = In(2)
x = In(2).

We have now achieved one solution, = In2. For the second equation, e3 + 3 = 0, let us first
rearrange to see

e’ = -3.

Now, let’s stare at this equation for a minute. If we think about the graph of e* we notice that
the range of e” is (0,00) or rather e* > 0. In this way there is no (real) solution to e* = —3.
Alternatively, one may notice that if you try to take the natural logarithm of both side we would
find = = In(—3) which does not exist (as a real number). Based on our above discussion we have
only the one solution: = = 2.



4. Many natural phenomena obey power rules. That is
Y =CcXx™

where C' and m are positive constants which depend on the particular application. For example
in physics we have the Stephan-Boltzmann equation where Y is the power emitted by a star
with temperature X. In forestry we have models of tree size distribution where Y is the number
of trees with stem size X. Other examples include frequency of words in most languages,
population of cities, and rate of reaction in chemistry.

(a) Let y =InY and x = In X. Express y in terms of x assuming that ¥ = CX™. Note that
C and m are fixed constants.
(b) Suppose we made a plot of y as a function of . What would the graph look like?

Solution: (a) Let us start with Y = CX™. Since we want to introduce = and y we take the
natural logarithm of both sides

InY =In(CX™).
The left side is exactly y. For the right side we apply log rules:

y=InC+InX™
=InC+mlnX.

At this stage we have recognized x = In X in our equation and so we make the substitution
y=InC+ muz.

We have now achieved y as a function of x as desired.

(b) Since C' is a fixed constant the number In C is also a fixed constant. We can recognize our
equation for y as taking the form y = mx 4+ b where m is m and b is InC'. In this way we see
that our equation is the equation of a line with y-intercept In C' and slope m.

5. In this problem you will prove the identity

logy (vy) = logy,(z) + log,(y)

as seen in class. First let z; = logy(z) and zo = log,(y). Rewrite these two equations using
exponents instead of logarithms. Use your knowledge of exponent rules to manipulate the
equations until you achieve z1 + zo = log,(zy). Make sure that you explain each step.
Solution: There are several ways to formulate the proof. Here is one way. Let z; = log,(x)
and zz = logy(y). That is to say that b** = 2 and b*> = y. Let us now consider the product

xy = b*1b*?
and use exponent rules to see
Ty = pAtze,
Switching this exponential equation back to a logarithm equation gives
logy(zy) = 21 + 29.
Recalling the definition of z; and zo we arrive at the desired identity

log,(zy) = logy () + log(y)-



6. Bonus Prove the other two logarithm identities.

Solution: First we show log(z/y) = log,(x) —logy(y). This proof proceeds in the same manner
as the previous. Let z; = logy(z) and zo = logy(y) that is to say b*! = x and b*> = y. Consider
now the quotient and use the exponent rule to see

Tz b%

y b=

— HR1—R2

Switching back to a logarithm equation we have

x
logy, (y) = 21 — 22 = logy () — logy(y).
With the required result in hand the proof is complete.

Now the third identity: log,(aP) = plog, x. To start let z = plog,(z). Let us manipulate this
equation using our knowledge of logarithms and exponent laws:

o =logy(a)
b/P =g
)" =2
b* = aP

z = logy («P)

We have therefore achieved

plogy(x) = log; (")

as required. Note that our above manipulation requires that p # 0 (to avoid dividing by zero).
However, the identity is obviously true when p = 0. Observe

logy(2) = logy(1) = 0
and

0 - logy(x) = 0.



