Math 190 Homework 9: Solution

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner. Your work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page.

Questions:

1. If we know that

- $\int_{-1}^{3} f(x) d x=6$
- $\int_{-1}^{3} g(x) d x=-3$
then compute
(a) $\int_{-1}^{3}(2 f(x)-g(x)) d x$
(b) $\int_{-1}^{3}(4 f(x)+5 g(x)) d x$

Solution: (a) We split the integral in order to use our known information. Observe

$$
\begin{aligned}
\int_{-1}^{3}(2 f(x)-g(x)) d x & =\int_{-1}^{3} 2 f(x)+\int_{-1}^{3}(-g(x)) d x \\
& =2 \int_{-1}^{3} f(x)-\int_{-1}^{3} g(x) d x \\
& =2(6)-(-3) \\
& =12+3 \\
& =15
\end{aligned}
$$

(b) We apply the same manipulation again to see

$$
\begin{aligned}
\int_{-1}^{3}(4 f(x)+5 g(x)) d x & =\int_{-1}^{3} 4 f(x)+\int_{-1}^{3} 5 g(x) d x \\
& =4 \int_{-1}^{3} f(x)+5 \int_{-1}^{3} g(x) d x \\
& =4(6)+5(-3) \\
& =24-15 \\
& =9
\end{aligned}
$$

2. Find a function $F(x)$ such that $F^{\prime}(x)=5 \cos x-\sqrt{3} \sin x$ and $F(\pi / 6)=4$.

Solution: We seek $F(x)$ where $F^{\prime}(x)=5 \cos x-\sqrt{3} \sin x$ and so we integrate to see

$$
F(x)=5 \sin x+\sqrt{3} \cos x+C .
$$

We now wish to ensure that $F(\pi / 6)=4$. We therefore select C to satisfy this condition. That is

$$
\begin{aligned}
4 & =F\left(\frac{\pi}{6}\right) \\
& =5 \sin \left(\frac{\pi}{6}\right)+\sqrt{3} \cos \left(\frac{\pi}{6}\right)+C \\
& =5\left(\frac{1}{2}\right)+\sqrt{3}\left(\frac{\sqrt{3}}{2}\right)+C \\
& =\frac{5}{2}+\frac{3}{2}+C \\
& =\frac{8}{2}+C \\
& =4+C .
\end{aligned}
$$

Hence, $C=4-4=0$ and so our desired $F(x)$ is

$$
F(x)=5 \sin x+\sqrt{3} \cos x
$$

3. Compute the following indefinite integrals
(a) $\int 2 d x$
(b) $\int \sin (3 x) d x$
(c) $\int e^{x+1} d x$

Solution: (a)

$$
\int 2 d x=2 x+C
$$

(b) With a little guess work we can find the form of the integral

$$
\int \sin (3 x) d x=-\frac{1}{3} \cos (3 x)+C
$$

If you don't want to guess and check we can solve this by making a substitution. Take $u=3 x$ then $d u=3 d x$ and we have

$$
\int \sin (3 x) d x=\frac{1}{3} \int \sin u d u=-\frac{1}{3} \cos u+C=-\frac{1}{3} \cos (3 x)+C .
$$

(c) We compute

$$
\int e^{x+1} d x=e^{x+1}+C
$$

Again, if you prefer not to guess we can use a simple substitution. Let $u=x+1$ so that $d u=d x$ and now

$$
\int e^{x+1} d x=\int e^{u} d u=e^{u}+C=e^{x+1}+C
$$

4. Compute the following indefinite integral

$$
\int \frac{\sqrt{x}-2 x^{4}}{\sqrt{x^{3}}} d x
$$

Solution: Let us first modify the integrand until the form is pleasing to us. We split the fraction and combine powers of x

$$
\begin{aligned}
\int \frac{\sqrt{x}-2 x^{4}}{\sqrt{x^{3}}} d x & =\int\left(\frac{x^{1 / 2}}{x^{3 / 2}}-\frac{2 x^{4}}{x^{3 / 2}}\right) d x \\
& =\int\left(x^{-1}-2 x^{5 / 2}\right) d x \\
& =\ln |x|-2 \frac{2}{7} x^{7 / 2}+C \\
& =\ln |x|-\frac{4}{7} x^{7 / 2}+C
\end{aligned}
$$

5. (a) Suppose that

$$
\int_{-1}^{1} f(x) d x=-2 \quad \text { and } \quad \int_{1}^{4} f(x) d x=-3
$$

Find

$$
\int_{-1}^{4} f(x) d x
$$

Explain how you know using a picture.
(b) What is

$$
\int_{2}^{2} f(x) d x ?
$$

Explain how you know using a picture.
Solution: (a) We claim that

$$
\int_{-1}^{1} f(x) d x+\int_{1}^{4} f(x) d x=\int_{-1}^{4} f(x) d x
$$

In this way

$$
\int_{-1}^{4} f(x) d x=-2-3=-5 .
$$

To address the claim observe the following figure:

We see that the area under the curve between -1 and 4 can be broken into two areas, the first being between -1 and 1 and the second between 1 and 4 . In fact, in general we have

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x .
$$

We can also think about this identity in terms of the Fundamental Theorem of Calculus. Suppose we have an anti-derivative of $f(x)$ and call it $F(x)$. Then

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=F(b)-F(a)+F(c)-F(b)=F(c)-F(a)=\int_{a}^{c} f(x) d x
$$

as required.
(b) Consider

$$
\int_{2}^{2} f(x) d x
$$

Let us think about what this will look like. Observe the figure

The region represented by this integral is nothing but a one dimensional line. This one dimensional object has no area and so

$$
\int_{2}^{2} f(x) d x=0
$$

In general we have that

$$
\int_{a}^{b} f(x) d x=0
$$

Again, we can think about this property in terms of the FTofC. For anti-derivative $F(x)$ we see

$$
\int_{2}^{2} f(x) d x=F(2)-F(2)=0
$$

as desired.

