## Math 190 Homework 10: Solutions

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner. Your work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page.

## Questions:

1. Compute the following integrals
(a) $\int \frac{\sin x}{\cos x} d x$
(b) $\int \sin x e^{\cos x} d x$

Solution: (a) We make the substitution $u=\cos x$. In this way $d u=-\sin x d x$. So

$$
\int \frac{\sin x}{\cos x} d x=-\int \frac{1}{u} d u=-\ln |u|+C=-\ln |\cos x|+C .
$$

(b) Again we make the substitution $u=\cos x$. Again $d u=-\sin x d x$. So

$$
\int \sin x e^{\cos x} d x=-\int e^{u} d u=-e^{u}+C=-e^{\cos x}+C
$$

Note in both cases that we can check our answer by taking the derivative (using chain rule).
2. Find a function $F(x)$ such that

$$
F^{\prime}(x)=-\sqrt{3} \cos x+4 \sin 3 x
$$

and $F(\pi / 3)=0$.

## Solution:

We seek the anti-derivative $F(x)$. We compute

$$
\begin{aligned}
F(x) & =\int(-\sqrt{3} \cos x+4 \sin 3 x) d x \\
& =-\sqrt{3} \int \cos x d x+4 \int \sin 3 x d x \\
& =-\sqrt{3} \sin x-\frac{4}{3} \cos 3 x+C
\end{aligned}
$$

Now we find $C$ so that our condition is satisfied. We insist that

$$
\begin{aligned}
0 & =F(\pi / 3)=-\sqrt{3} \sin \left(\frac{\pi}{3}\right)-\frac{4}{3} \cos \left(3 \cdot \frac{\pi}{3}\right)+C \\
& =-\sqrt{3} \cdot \frac{\sqrt{3}}{2}-\frac{4}{3} \cos (\pi)+C \\
& =-\frac{3}{2}+\frac{4}{3}+C
\end{aligned}
$$

and so

$$
C=\frac{3}{2}-\frac{4}{3}=\frac{9}{6}-\frac{8}{6}=\frac{1}{6} .
$$

Putting everything together we find

$$
F(x)=-\sqrt{3} \sin x-\frac{4}{3} \cos 3 x+\frac{1}{6} .
$$

3. A function is called odd if

$$
f(-x)=-f(x)
$$

for all values of $x$.
(a) Using a picture, explain why you suspect that

$$
\int_{-a}^{a} f(x) d x=0
$$

(b) Prove using a substitution that

$$
\int_{-a}^{a} f(x) d x=0
$$

for any odd function $f(x)$ and any value of $a$.

## Solution:

(a) Here is the graph of an odd function:


Observe that the magnitude of the area under the curve from $-a$ to 0 is the same as the area under the curve from 0 to $a$. In this way we expect the negative area to cancel exactly with the positive area. That is

$$
\int_{-a}^{a} f(x) d x=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x=0 .
$$

(b) We will now prove this fact using a substitution. We first split the integral as follows

$$
\int_{-a}^{a} f(x) d x=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x
$$

and then make the substitution $u=-x$ for the first integral only. In this way $d u=-d x$ and so (working with just the first integral)

$$
\int_{-a}^{0} f(x) d x=-\int_{a}^{0} f(-u) d u
$$

Note that we changed the bounds of integration. That is when $x=-a$ we have $u=a$ and when $x=0$ we have $u=0$. Recall that $f(x)$ was defined to be odd. That is to say that $f(-u)=-f(u)$. Substituting this yields

$$
\int_{-a}^{0} f(x) d x=-\int_{a}^{0} f(-u) d u=\int_{a}^{0} f(u) d u=-\int_{0}^{a} f(u) d u
$$

where in the last step we have reversed the bounds at the cost of a minus sign. Note also that

$$
-\int_{0}^{a} f(u) d u=-\int_{0}^{a} f(x) d x
$$

since we are just changing the name of our variable. Therefore, after putting everything back together we see

$$
\int_{-a}^{a} f(x) d x=-\int_{0}^{a} f(x) d x+\int_{0}^{a} f(x) d x=0
$$

as required.
4. Compute the following definite integral

$$
\int_{-2}^{2} x e^{x^{2}} d x
$$

Explain, in reference to Question 3, why you expected this result.

## Solution:

We can compute this integral using a substitution. Take $u=x^{2}$. Then $d u=2 x d x$. So

$$
\int_{-2}^{2} x e^{x^{2}} d x=\frac{1}{2} \int_{4}^{4} e^{u} d u=0
$$

since we are starting and ending our integral at the same place, namely $u=4$. Alternative we can compute the long way:

$$
\frac{1}{2} \int_{4}^{4} e^{u} d u=\left.\frac{1}{2} e^{u}\right|_{4} ^{4}=\frac{1}{2}\left(e^{4}-e^{4}\right)=0
$$

If you don't want to change the bounds of integration we can also compute the indefinite integral and substitute the bounds at the end. After the same substitution we get

$$
\int x e^{x^{2}} d x=\frac{1}{2} \int e^{u} d u=\frac{1}{2} e^{u}+C=\frac{1}{2} e^{x^{2}}+C .
$$

Note that the $+C$ is not necessary here since we only wish to compute the definite integral. Now

$$
\int_{-2}^{2} x e^{x^{2}} d x=\left.\frac{1}{2} e^{x^{2}}\right|_{-2} ^{2}=\frac{1}{2}\left(e^{2^{2}}-e^{(-2)^{2}}\right)=\frac{1}{2}\left(e^{2^{2}}-e^{2^{2}}\right)=0 .
$$

This result is not surprising since the function in question is odd. That fact together with the symmetric limits ( -2 to 2 ) means that the integral must be zero by Question 3.
To compute this integral faster we can prove that it is odd and appeal to Q3. Take

$$
f(x)=x e^{x^{2}}
$$

Observe that

$$
f(-x)-x e^{(-x)^{2}}=-x e^{x^{2}}=-f(x)
$$

and so our function $f(x)$ is odd. In this way we know immediately that

$$
\int_{-2}^{2} x e^{x^{2}} d x=0
$$

5. Evaluate the following definite integral

$$
\int_{0}^{4} \frac{x}{\sqrt{1+2 x}} d x \text {. }
$$

## Solution:

We compute by using a substitution. Let $u=1+2 x$. Then $d u=2 d x$. Applying the substitution gives

$$
\int_{0}^{4} \frac{x}{\sqrt{1+2 x}} d x=\frac{1}{2} \int_{1}^{9} \frac{x}{\sqrt{u}} d u .
$$

We have changed the bounds. Note that when $x=0$ we have $u=1$ and when $x=4$ we have $u=9$. Our substitution, however, is not complete. We still have an $x$. We can remove this by using our relationship between $u$ and $x$ :

$$
u=1+2 x \Longrightarrow x=\frac{u-1}{2}
$$

And so, our integral now reads

$$
\int_{0}^{4} \frac{x}{\sqrt{1+2 x}} d x=\frac{1}{2} \int_{1}^{9} \frac{x}{\sqrt{u}} d u=\frac{1}{2} \int_{1}^{9} \frac{u-1}{2} \frac{1}{\sqrt{u}} d u .
$$

We can now compute this integral with a little manipulation

$$
\begin{aligned}
\frac{1}{2} \int_{1}^{9} \frac{u-1}{2} \frac{1}{\sqrt{u}} d u & =\frac{1}{4} \int_{1}^{9}\left(\frac{u}{\sqrt{u}}-\frac{1}{\sqrt{u}}\right) d u \\
& =\frac{1}{4} \int_{1}^{9}\left(u^{1 / 2}-u^{-1 / 2}\right) d u \\
& =\frac{1}{4}\left(\frac{2}{3} u^{3 / 2}-\left.2 u^{1 / 2}\right|_{1} ^{9}\right) \quad[\text { alternatively change back to } x \text { and use old bounds }] \\
& =\frac{1}{2}\left(\frac{1}{3} u^{3 / 2}-\left.u^{1 / 2}\right|_{1} ^{9}\right) \\
& =\frac{1}{2}\left(\frac{1}{3}(\sqrt{9})^{3}-\sqrt{9}-\frac{1}{3} 1^{3 / 2}+1^{1 / 2}\right) \quad[\text { feel free to stop here }] \\
& =\frac{1}{2}\left(\frac{1}{3} 27-3-\frac{1}{3}+1\right) \\
& =\frac{1}{2}\left(9-2-\frac{1}{3}\right) \\
& =\frac{1}{2}\left(7-\frac{1}{3}\right) \\
& =\frac{1}{2} \cdot \frac{20}{3} \\
& =\frac{10}{3}
\end{aligned}
$$

