Math 190 Homework 1: Solutions

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner. Your work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page.

Questions:

1. Find the domain of

$$
f(x)=\frac{\sqrt{x+7}}{x^{2}+3 x-18} .
$$

Solution: We require $x+7 \geq 0$ and $x^{2}+3 x-18 \neq 0$. The first so that we are not taking the square root of a negative number and the second so that we are not dividing by zero. Rearranging the first gives $x \geq-7$. For the second we factor

$$
\begin{array}{r}
x^{2}+3 x-18 \neq 0 \\
(x+6)(x-3) \neq 0
\end{array}
$$

and so $x \neq-6$ and $x \neq 3$. Putting everything together we see that the domain is

$$
\{x \in \mathbb{R}: x \geq-7 \text { and } x \neq-6 \text { and } x \neq 3\} .
$$

This can also be denoted as

$$
[-7,-6) \cup(-6,3) \cup(3, \infty) .
$$

2. Find all (real) zeros of

$$
g(x)= \begin{cases}2 x^{2}-7 x+3, & x \leq 2 \\ -\frac{1}{2}(x-2)+2, & x>2\end{cases}
$$

Solution: Let us find where each branch is zero. First

$$
\begin{aligned}
2 x^{2}-7 x+3 & =0 \\
2 x^{2}-6 x-x+3 & =0 \\
2 x(x-3)-(x-3) & =0 \\
(2 x-1)(x-3) & =0
\end{aligned}
$$

and so we see $x=3$ and $x=1 / 2$. Since $g(x)$ only takes the value $2 x^{2}-7 x+3$ for $x \leq 2$ our computation does not imply that $g(3)=0$. We have, however, found that $g(1 / 2)=0$. Now for the second branch we solve

$$
\begin{aligned}
-\frac{1}{2}(x-2)+2 & =0 \\
x-2 & =4 \\
x & =6 .
\end{aligned}
$$

Since $6>2$ we do in fact have $g(6)=0$. Therefore our two zeros are:

$$
x=\frac{1}{2} \text { and } x=6 .
$$

3. Find all (real) values of θ satisfying

$$
3 \cos (4 \theta)-\pi=0
$$

where $0 \leq \theta<2 \pi$.
Solution 1: First let us rearrange the equation to read

$$
\cos (4 \theta)=\frac{\pi}{3}
$$

We can even let $x=4 \theta$ if we wish to see

$$
\cos x=\frac{\pi}{3}
$$

Recall the range of $\cos x$ and that $-1 \leq \cos x \leq 1$. Note also that $\pi=3.14 \ldots$ and so $\pi / 3>1$. In this way we see that no (real) value for x will satisfy $\cos x=\pi / 3$. Hence our original equation has no solutions.

Solution 2: Starting from $\cos x=\pi / 3$ we can proceed graphically. Let us plot the graphs $y=\cos x$ and $y=\pi / 3$ to see where (if at all) they intersect.

So as seen in the graph there is no intersection between $y=\pi / 3$ (blue) and $y=\cos x$ (red) and therefore our original equation has no (real) solutions.

Solution 3: Again starting from $\cos x=\pi / 3$ we can solve this problem by considering a right triangle with angle x, hypotenuse 3 and adjacent side length π :

However such a triangle cannot exist since the hypotenuse must always be greater than the lengths of the other two sides. In this way we again see that no angle x will result in $\cos x$ taking the value $\pi / 3$.

Solution 4: We can even plot $f(x)=3 \cos (4 \theta)-\pi$ from the start using transformations to see:

From the graph see that $f(x)$ does not take the value 0 for any x value and so the equation has no solution.
4. Find all (real) solutions to

$$
x^{4}-4 x^{2}+2=0 .
$$

Solution: While solving a general quartic equation is a difficult task this particular one is special. Observe that if we let $u=x^{2}$ then we obtain the quadratic equation

$$
y^{2}-4 y+2=0
$$

which we can solve in the usual way. We proceed by means of the quadratic formula

$$
\begin{aligned}
y & =\frac{4 \pm \sqrt{4^{2}-4(1)(2)}}{2} \\
& =2 \pm \frac{\sqrt{8}}{2} \\
& =2 \pm \sqrt{2} .
\end{aligned}
$$

Now that we have solved for y we can find x by taking the square roots. Note that since $2-\sqrt{2}>0$ we don't have to worry about taking the square root of a negative number. So our four solutions are:

$$
x= \pm \sqrt{y}= \pm \sqrt{2 \pm \sqrt{2}}
$$

5. Explain why the equation

$$
x^{3}+a x^{2}+b x+c=0
$$

cannot have four solutions no matter the values of a, b, c.
Solution: Let us start by supposing that $f(x)=x^{3}+a x^{2}+b x+c$ has exactly four zeros. Name them $x_{1}, x_{2}, x_{3}, x_{4}$. If this were the case, then after some factoring, we should be able to write $f(x)$ as

$$
f(x)=A\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)
$$

where A is a number. Now if we expand the above expression the first term will contain x^{4}. That is

$$
f(x)=A x^{4}+\ldots
$$

But $f(x)$ cannot take this form since it is a cubic equation. Therefore our initial assumption was false and f cannot have four zeros, as desired.

