Math 190 Homework 2: Solutions

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner on stapled pieces of paper. Your stapled work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page. Staple your assignment.

Questions:

1. Find all $x \in[0,2 \pi)$ satisfying

$$
\sin x \cos x=\sqrt{2} \sin x
$$

Solution: We can cancel $\sin x$ from both sides of the equation providing $\sin x \neq 0$ (or else we would be dividing by zero). In this way we must consider the equation $\cos x=\sqrt{2}$ as well as the possibility that $\sin x=0$. Alternatively we can rearrange the equation to read

$$
\sin x \cos x-\sqrt{2} \sin x=0
$$

and factor to see

$$
\sin x(\cos x-\sqrt{2})=0
$$

Either way we must solve the two equations

$$
\begin{array}{r}
\cos x=\sqrt{2} \\
\sin x=0
\end{array}
$$

For the first, if we recall the range of $\cos x$ we see that $-1 \leq \cos x \leq 1$ and note that $\sqrt{2}>1$ we observe that $\cos x=\sqrt{2}$ has no real solutions. We may still have solutions from $\sin x=0$, however. Recall (perhaps after plotting the graph of sine) that $\sin x=0$ for $x=n \pi$ where n an integer (also denoted $n \in \mathbb{Z}$ or $n=\ldots-2,-1,0,1,2, \ldots$). Therefore all the solutions to our original equation are $x=n \pi$ with $n \in \mathbb{Z}$.
2. Find all $x \in[0,2 \pi)$ satisfying

$$
2 \cos ^{2} x+(2+\sqrt{3}) \cos x=-\sqrt{3}
$$

Solution: First, let us rearrange the equation to read

$$
2 \cos ^{2} x+(2+\sqrt{3}) \cos x+\sqrt{3}=0
$$

and if we let $y=\cos x$ we recognize the above as a quadratic equation

$$
2 y^{2}+(2+\sqrt{3}) y+\sqrt{3}=0 .
$$

Rather than use the quadratic formula (which can be done) we will factor the above by decomposition. First we split the middle term to see

$$
2 y^{2}+2 y+\sqrt{3} y+\sqrt{3}=0
$$

and factor

$$
\begin{array}{r}
2 y(y+1)+\sqrt{3}(y+1)=0 \\
(2 y+\sqrt{3})(y+1)=0 .
\end{array}
$$

Now we can put back $\cos x$ and see

$$
(2 \cos x+\sqrt{3})(\cos x+1)=0
$$

Observing the graph of cosine we see that for $x \in[0,2 \pi)$ the only way to have $\cos x=-1$ is if $x=\pi$. Similarly we solve $\cos x=-\sqrt{3} / 2$ which gives us $x=5 \pi / 6$ and $x=7 \pi / 6$ after observing the unit circle and/or special triangles. So all together we have three solutions

$$
x=\frac{5 \pi}{6}, \pi, \frac{7 \pi}{6} .
$$

3. Find all (real) zeros of the function

$$
h(x)=\sin \left(\frac{1}{x}\right)
$$

Solution: First note that the domain of h is $\{x \in \mathbb{R}: x \neq 0\}$. To simplify matters we can let $\theta=1 / x$. In this way we must solve

$$
\sin \theta=0
$$

We have already seen that such θ take the form $\theta=n \pi$ where n is an integer. In this way we see that

$$
\frac{1}{x}=\theta=n \pi
$$

or rather

$$
x=\frac{1}{n \pi} .
$$

Now we cannot have n be all the integers since if $n=0$ then x is not defined. So we have the zeros $x=1 /(n \pi)$ where n is a non-zero integer (also written as $n \in \mathbb{Z} \backslash\{0\}$ or $n=\ldots-2,-1,1,2, \ldots$). By the way, here is the graph of $\sin 1 / x$. Note the largest positive zero at $x=1 / \pi$ followed by $1 /(2 \pi)$ and $1 /(3 \pi)$ and so on.

4. Final all (real) x satisfying

$$
2 x^{1 / 3}+5 x^{4 / 3}=0
$$

Solution: Let us common factor. Each term has an $x^{1 / 3}$. So

$$
x^{1 / 3}(2+5 x)=0
$$

noting that $4 / 3-1 / 3=3 / 3=1$. So we solve both $x^{1 / 3}=0$ and $2+5 x=0$. For the first if we cube both sides we achieve $x=0$. For the second we rearrange to obtain $x=-2 / 5$. And so our two solutions are

$$
x=-\frac{2}{5}, 0
$$

5. Let

$$
f(x)=\sqrt{2 x+1} \quad \text { and } \quad g(x)=\left\{\begin{array}{rll}
-1 & \text { if } & x<0 \\
0 & \text { if } & x=0 \\
1 & \text { if } & x>0
\end{array}\right.
$$

(a) The composition $f(g(x))$ has only two possible outputs. Find the two values and explain your answer.
(b) The composition $g(f(x))$ also only has two outputs. Find these values as well. Explain.

Solution: (a) No matter the input x the value $g(x)$ will take one of only three values. If $x<0$ then $g(x)=-1$ and so

$$
f(g(x))=\sqrt{2(-1)+1}=\sqrt{-1}
$$

is not defined (for us). If $x=0$ then $g(x)=0$ and so

$$
f(g(x))=\sqrt{2(0)+1}=\sqrt{1}=1
$$

which is a fine number. Finally if $x>0$ then $g(x)=1$ and so

$$
f(g(x))=\sqrt{2(1)+1}=\sqrt{3}
$$

another fine number. So we see that $f(g(x))$ will take only two values no matter the input x. These two values are 1 and $\sqrt{3}$. By the way (this is not required) after this discussion we can write the following equation for $f(g(x))$

$$
f(g(x))=\left\{\begin{array}{lll}
\text { undefined } & \text { if } & x<0 \\
1 & \text { if } & x=0 \\
\sqrt{3} & \text { if } & x>0
\end{array}\right.
$$

(b) We play the same game. Let us think about the outputs from the function $f(x)$. Noting the range of \sqrt{x} we know $0 \leq \sqrt{x}$. So $f(x)=\sqrt{2 x+1}$ can only take positive values or zero. If $f(x)=0$ then $g(f(x))=0$. If $f(x)>0$ then $g(f(x))=1$. And so the two possible outputs are 0 and 1 . With a little extra work (again not required) we can find an equation for $g(f(x))$. To have $0=f(x)=\sqrt{2 x+1}$ we would need $2 x+1=0$ that is $x=-1 / 2$. If $x<-1 / 2$ then $2 x+1<0$ and so $f(x)$ is not defined. If $x>-1 / 2$ then $f(x)>0$ and so $g(f(x))=1$. Putting everything together gives

$$
g(f(x))=\left\{\begin{array}{lll}
\text { undefined } & \text { if } & x<-\frac{1}{2} \\
0 & \text { if } & x=-\frac{1}{2} \\
1 & \text { if } & x>-\frac{1}{2}
\end{array}\right.
$$

