Math 190 Homework 3: Due Monday October 5

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner. Your work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page.

Questions:

1. Find all x satisfying

$$
\ln (2 x-3)-\ln (5)=8
$$

Solution: We first rewrite the above equation using one of our logarithm laws:

$$
\begin{array}{r}
\ln (2 x-3)-\ln (5)=8 \\
\ln \left(\frac{2 x-3}{5}\right)=8
\end{array}
$$

Note that we cannot take e to the power of each term. We must take e to the power of each side. Continuing we see

$$
\begin{gathered}
e^{\ln \left(\frac{2 x-3}{5}\right)}=e^{8} \\
\frac{2 x-3}{5}=e^{8} \\
2 x-3=5 e^{8} \\
2 x=5 e^{8}+3 \\
x=\frac{5 e^{8}+3}{2} .
\end{gathered}
$$

And so, we have arrived at the desired answer.
2. Find all x satisfying

$$
\ln \left((x-1)^{x}\right)=0
$$

Solution: Again, let us start by using a logarithm identity

$$
\begin{aligned}
\ln \left((x-1)^{x}\right) & =0 \\
x \ln (x-1) & =0 .
\end{aligned}
$$

At this stage we can divide both sides by x providing that $x \neq 0$. If $x=0$ we can observe that our original equation is actually satisfied. That is

$$
\ln \left((0-1)^{0}\right)=\ln (1)=0
$$

and so $x=0$ is a solution. Also acceptable is to say that at the stage $x \ln (x-1)=0$ we have two solutions, either $x=0$ or $\ln (x-1)=0$. (If plugging $x=0$ into our equation to see $0 \cdot \ln (0-1)$ makes you nervous then I congratulate you on noticing that we can't put -1 into \ln. Everything does work out though, so feel free to ask me about it.)
So, we have the solution $x=0$. If $x \neq 0$ then we can divide by x to see

$$
\ln (x-1)=0
$$

and notice that the only way to make the logarithm zero is to take $x-1=1$ and so $x=2$ is our other solution. Together we have two solutions: $x=0$ and $x=2$.
3. Find all x satisfying

$$
e^{2 x}-4 e^{x}+4=0
$$

Solution:

This problem may look intimidating from the onset but if we looks closely we can recognize the above as a familiar quadratic equation. First, let us rewrite the first term in our expression using exponent rules

$$
\begin{array}{r}
e^{2 x}-4 e^{x}+4=0 \\
\left(e^{x}\right)^{2}-4 e^{x}+4=0
\end{array}
$$

Now if we let $u=e^{x}$ we see

$$
u^{2}-4 u+4=0
$$

which we can factor as

$$
(u-2)^{2}=0
$$

So, we obtain the solution $u=2$. Switching back to x we get

$$
\begin{array}{r}
e^{x}=2 \\
\ln \left(e^{x}\right)=\ln 2 \\
x=\ln 2 .
\end{array}
$$

Hence our only solution is $x=\ln 2$.
4. Many natural phenomena obey power rules. That is

$$
Y=C X^{m}
$$

where C and m are constants which depend on the particular application. For example in physics we have the Stephan-Boltzmann equation where Y is the power emitted by a star with temperature X. In forestry we have models of tree size distribution where Y is the number of trees with stem size X. Other examples include frequency of words in most languages, population of cities, and rate of reaction in chemistry.
(a) Let $y=\ln Y$ and $x=\ln X$. Express y in terms of x assuming that $Y=C X^{m}$. Note that C and m are fixed constants.
(b) Suppose we made a plot of y as a function of x. What would the graph look like?

Solution: (a) Let us start with $Y=C X^{m}$. Since we want to introduce x and y we take the natural logarithm of both sides

$$
\ln Y=\ln \left(C X^{m}\right)
$$

The left side is exactly y. For the right side we apply \log rules:

$$
\begin{aligned}
y & =\ln C+\ln X^{m} \\
& =\ln C+m \ln X .
\end{aligned}
$$

At this stage we have recognized $x=\ln X$ in our equation and so we make the substitution

$$
y=\ln C+m x .
$$

We have now achieved y as a function of x as desired.
(b) Since C is a fixed constant the number $\ln C$ is also a fixed constant. We can recognize our equation for y as taking the form $y=m x+b$ where m is m and b is $\ln C$. In this way we see that our equation is the equation of a line with y-intercept $\ln C$ and slope m.
5. In this problem you will prove the identity

$$
\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)
$$

as seen in class. First let $z_{1}=\log _{b}(x)$ and $z_{2}=\log _{b}(y)$. Rewrite these two equations using exponents instead of logarithms. Use your knowledge of exponent rules to manipulate the equations until you achieve $z_{1}+z_{2}=\log _{b}(x y)$. Make sure that you explain each step.

Solution: There are several ways to formulate the proof. Here is one way. Let $z_{1}=\log _{b}(x)$ and $z_{2}=\log _{b}(y)$. That is to say that $b^{z_{1}}=x$ and $b^{z_{2}}=y$. Let us now consider the product

$$
x y=b^{z_{1}} b^{z_{2}}
$$

and use exponent rules to see

$$
x y=b^{z_{1}+z_{2}} .
$$

Switching this exponential equation back to a logarithm equation gives

$$
\log _{b}(x y)=z_{1}+z_{2} .
$$

Recalling the definition of z_{1} and z_{2} we arrive at the desired identity

$$
\log _{b}(x y)=\log _{b}(x)+\log _{b}(y) .
$$

6. Bonus Prove the other two logarithm identities.

Solution: First we show $\log _{b}(x / y)=\log _{b}(x)-\log _{b}(y)$. This proof proceeds in the same manner as the previous. Let $z_{1}=\log _{b}(x)$ and $z_{2}=\log _{b}(y)$ that is to say $b^{z_{1}}=x$ and $b^{z_{2}}=y$. Consider now the quotient and use the exponent rule to see

$$
\frac{x}{y}=\frac{b^{z_{1}}}{b^{z_{2}}}=b^{z_{1}-z_{2}} .
$$

Switching back to a logarithm equation we have

$$
\log _{b}\left(\frac{x}{y}\right)=z_{1}-z_{2}=\log _{b}(x)-\log _{b}(y)
$$

With the required result in hand the proof is complete.
Now the third identity: $\log _{b}\left(x^{p}\right)=p \log _{b} x$. To start let $z=p \log _{b}(x)$. Let us manipulate this equation using our knowledge of logarithms and exponent laws:

$$
\begin{aligned}
\frac{z}{p} & =\log _{b}(x) \\
b^{z / p} & =x \\
\left(b^{z}\right)^{1 / p} & =x \\
b^{z} & =x^{p} \\
z & =\log _{b}\left(x^{p}\right)
\end{aligned}
$$

We have therefore achieved

$$
p \log _{b}(x)=\log _{b}\left(x^{p}\right)
$$

as required.

