Math 190 Homework 4: Due Wednesday October 14

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner. Your work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page.

Questions:

When asked to compute a limit in the following problems: Find the value of the limit if it exists. If the limit does not exist but you can assign the value ∞ or $-\infty$ to the limit do so. Otherwise, explain why the limit does not exist.

1. Compute

$$
\lim _{t \rightarrow 0}\left(\frac{1}{t \sqrt{1+t}}-\frac{1}{t}\right)
$$

2. Compute

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right)
$$

3. Draw the graph of a function $f(x)$ satisfying the following properties (you do not have to come up with an equation for your graph).

- The domain is $\{x \in \mathbb{R}:-2 \leq x \leq 3\}$.
- $\lim _{x \rightarrow 2} f(x)=4$
- $f(2)=5$
- $\lim _{x \rightarrow-1^{+}} f(x)=2$
- $\lim _{x \rightarrow-1^{-}} f(x)=-1$

4. Find the equations of all vertical and horizontal asymptotes of the following function

$$
f(x)=\frac{3 x^{2}-14 x-5}{2 x^{2}-9 x-5}
$$

Ensure you show the computation of all relevant limits.
5. Consider the function

$$
g(x)=\frac{\cos (3 x)}{x}
$$

(a) Explain what happens to the numerator as x approaches ∞.
(b) Explain what happens to the denominator as x approaches ∞.
(c) Using your answers from (a) and (b) explain what happens to the values of $g(x)$ as $x \rightarrow \infty$. In this way you can suggest a value for

$$
\lim _{x \rightarrow \infty} \frac{\cos (3 x)}{x}
$$

(d) Bonus: How many times does $g(x)$ cross its horizontal asymptote? Explain how you know.

