Math 190 Homework 5: Solutions

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner. Your work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page.

Questions:

1. Consider the function $f(x)=\frac{1}{x}$.
(a) Find the slope of the secant line passing through the points $(2,1 / 2)$ and (1.5, 1/1.5) (feel free to use a calculator).
(b) Find the slope of the secant line passing through the points $(2,1 / 2)$ and $(1.9,1 / 1.9)$.
(c) Find the slope of the secant line passing through the points $(2,1 / 2)$ and $(1.99,1 / 1.99)$.
(d) What do you think the slope of the tangent line at $(2,1 / 2)$ is?

Solution: In (a)-(c) we find the slope of the secant line using the formula

$$
m_{\mathrm{sec}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
$$

(a)

$$
m_{\mathrm{sec}}=\frac{1 / 2-1 / 1.5}{2-1.5}=-\frac{1}{3}
$$

(b)

$$
m_{\mathrm{sec}}=\frac{1 / 2-1 / 1.9}{2-1.9} \approx-0.2631
$$

(c)

$$
m_{\mathrm{sec}}=\frac{1 / 2-1 / 1.99}{2-1.99} \approx-0.2512
$$

(d) So, based on the slopes of the above secant lines, it looks like the slope of the tangent line is about -0.25 .
2. Using a limit find the slope of the tangent line to $f(x)=1 / x$ at $(2,1 / 2)$. Was your prediction in Question 1 correct?

Solution:

First, let's find the derivative of $f(x)$ using the limit definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Also possible is to replace x by 2 in the above and compute from there. Computing

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{x-(x+h)}{x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{-h}{x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+0)} \\
& =-\frac{1}{x^{2}} .
\end{aligned}
$$

And so we achieve

$$
f^{\prime}(2)=-\frac{1}{4}
$$

as predicted in Question 1.
3. Using the limit definition of the derivative (and not any other method) find the derivative of the function

$$
f(x)=\frac{x}{x-1}
$$

and use it to compute the slope of the tangent line to $f(x)$ at $x=4$.
Solution: Let us start by computing the derivative using the limit definition. We find a common
denominator, expand and simplify:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x+h}{x+h-1}-\frac{x}{x-1}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{(x+h)(x-1)-x(x+h-1)}{(x-1)(x+h-1)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x^{2}-x+x h-h-x^{2}-x h+x}{(x-1)(x+h-1)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-h}{(x-1)(x+h-1)}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{-1}{(x-1)(x+h-1)}\right) \\
& =\frac{-1}{(x-1)(x+0-1)} \\
& =\frac{-1}{(x-1)^{2}} .
\end{aligned}
$$

Therefore, the slope of the tangent line to $f(x)$ at the point $x=4$ is

$$
f^{\prime}(4)=-\frac{1}{(4-1)^{2}}=-\frac{1}{9} .
$$

