Math 190 Homework 6: Due Monday October 26

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner. Your work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page.

Questions:

1. For the following problems find the derivative of the given function.
(a) $2 x^{3}+\frac{3}{\sqrt{x}}+x^{e}-4 e^{x}$
(b) $e^{x} \cos x$
(c) $\frac{\cos x}{\sin x}$
2. Find the equation of the tangent line to

$$
h(x)=\frac{x \cos x}{x+1}
$$

at the point $x=\pi$.
3. (a) Use product rule to find the derivative of $\sin ^{2} x$.
(b) Find all x-values where

$$
f(x)=\sin ^{2} x-\cos x
$$

has horizontal tangent lines.
4. (a) Recall the derivative of $e^{x} \cos x$ from Question 1(c). Using your answer, find the derivative of

$$
e^{x} \cos x \sin x
$$

using product rule once.
(b) In the same way you solved Question 4(a) use the product rule twice to prove in the following triple product rule:

$$
\frac{d}{d x}(f g h)=\frac{d f}{d x} g h+f \frac{d g}{d x} h+f g \frac{d h}{d x} .
$$

5. In this problem you will find all tangent lines of $f(x)=x^{2}$ which pass through the point $(1,-3)$. Consider following these steps:
Step 1: Draw the graph of x^{2} and label the point $(1,-3)$. Try to draw a line tangent to x^{2} that passes through $(1,-3)$. Call this point p.
Step 2: Find the equation of the tangent line to x^{2} at point p.
Step 3: Solve for the value(s) of p that will ensure your tangent line passes through $(1,-3)$.
