Math 190 Homework 9: Solutions

The assignment is due at the beginning of class on the due date. You are expected to provide full solutions, which are laid out in a linear coherent manner. Your work must be your own and must be self-contained. Your assignment must be stapled with your name and student number at the top of the first page.

Questions:

1. Recall the following integral rules where k is a constant

- $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
- $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$.

Note that these rule works for indefinite integrals as well.
If we know that

- $\int_{-2}^{2} f(x) d x=5$
- $\int_{-2}^{2} g(x) d x=-1$
then compute
(a) $\int_{-2}^{2}(3 f(x)-2 g(x)) d x$
(b) $\int_{-2}^{2}(5 f(x)+7 g(x)) d x$
(c) $\int_{-2}^{2} 4 d x$

Solution:

(a)

$$
\begin{aligned}
\int_{-2}^{2}(3 f(x)-2 g(x)) d x & =\int_{-2}^{2} 3 f(x) d x-\int_{-2}^{2} 2 g(x) d x \\
& =3 \int_{-2}^{2} f(x) d x-2 \int_{-2}^{2} g(x) d x \\
& =3(5)-2(-1) \\
& =17
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{-2}^{2}(5 f(x)+7 g(x)) d x & =\int_{-2}^{2} 5 f(x) d x+\int_{-2}^{2} 7 g(x) d x \\
& =5 \int_{-2}^{2} f(x) d x+7 \int_{-2}^{2} g(x) d x \\
& =5(5)+7(-1) \\
& =18
\end{aligned}
$$

(c) We can compute this integral several ways. We can compute the integral directly:

$$
\int_{-2}^{2} 4 d x=\left.4 x\right|_{-2} ^{2}=4(2)-4(-2)=16
$$

or draw the graph of the function $f(x)=4$ and use the formula for the area of a rectangle

And so

$$
\text { Area }=\text { length } \cdot \text { width }=4 \cdot 4=16
$$

2. Compute the following definite integral

$$
\int_{1}^{2}\left(2 x^{3}-3 \sqrt{x}-\frac{5}{x^{2}}\right) d x
$$

Solution: We compute the anti-derivative of each term:

$$
\begin{aligned}
\int_{1}^{2}\left(2 x^{3}-3 \sqrt{x}-\frac{5}{x^{2}}\right) d x & =\frac{1}{2} x^{4}-2 x^{3 / 2}+\left.5 x^{-1}\right|_{1} ^{2} \\
& =\frac{1}{2} 2^{4}-2 \cdot 2^{3 / 2}+5 \cdot 2^{-1}-\left(\frac{1}{2} 1^{4}-2 \cdot 1^{3 / 2}+5 \cdot 1^{-1}\right) \\
& =7-4 \sqrt{2}
\end{aligned}
$$

3. Compute the following definite integral

$$
\int_{2}^{3}\left(4 e^{x}-\frac{4}{x}\right) d x
$$

Solution: We compute the anti-derivative of each term:

$$
\int_{2}^{3}\left(4 e^{x}-\frac{4}{x}\right) d x=4 e^{x}-\left.4 \ln x\right|_{2} ^{3}=4 e^{3}-4 e^{2}-4 \ln 3+4 \ln 2 .
$$

4. Suppose

$$
\int_{2}^{5} f(x) d x=7
$$

Find

$$
\int_{5}^{2} f(x) d x
$$

Solution: We solve this problem in two ways. One is to suppose we have the anti-derivative $F(x)$ and consider

$$
7=\int_{2}^{5} f(x) d x=F(5)-F(2)
$$

Now

$$
\int_{5}^{2} f(x) d x=F(2)-F(5)=-(F(5)-F(2))=-\int_{2}^{5} f(x) d x=-7 .
$$

Alternative we can add the two integrals together:

$$
\int_{2}^{5} f(x) d x+\int_{5}^{2} f(x) d x=\int_{2}^{2} f(x) d x=0
$$

Going from 2 to 5 and then from 5 back to 2 yields no net movement. Rearranging the above gives

$$
\int_{5}^{2} f(x) d x=-\int_{2}^{5} f(x) d x=-7 .
$$

5. Compute the following indefinite integral

$$
\int \frac{2 x+x^{3}}{\sqrt{x}} d x
$$

Solution: To compute this integral we split the sum

$$
\begin{aligned}
\int \frac{2 x+x^{3}}{\sqrt{x}} d x & =\int\left(\frac{2 x}{\sqrt{x}}+\frac{x^{3}}{\sqrt{x}}\right) d x \\
& =\int\left(2 \sqrt{x}+x^{5 / 2}\right) d x \\
& =\frac{4}{3} x^{3 / 2}+\frac{2}{7} x^{7 / 2}+C .
\end{aligned}
$$

Note that since this is an indefinite integral we can add any constant C.

