Math 190 Quiz 3: Friday Oct 23

The quiz is 20 minutes long and has two questions. No calculators or other aids are permitted. Show all of your work for full credit.

Questions:

1. (a) Using the limit definition of the derivative (and not any other method) find the derivative of

$$
f(x)=\frac{1}{3 x} .
$$

(b) Now find the derivative of $f(x)$ again but using a different method of your choosing. State which method you are using.

Solution: (a) We first find the derivative using the limit definition. We compute

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{3(x+h)}-\frac{1}{3 x}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{3 x-3(x+h)}{3(x+h) \cdot 3 x}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{3 x-3 x-3 h}{3(x+h) \cdot 3 x}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-3 h}{3(x+h) \cdot 3 x}\right) \\
& =\lim _{h \rightarrow 0} \frac{-1}{3(x+h) x} \\
& =-\frac{1}{3 x^{2}} .
\end{aligned}
$$

And so we have found the desired derivative.
(b) Let us now find the derivative using a different method. We will show two (only one was required). First we can use Power Rule by rewriting
our function

$$
f(x)=\frac{1}{3 x}=\frac{1}{3} x^{-1}
$$

and so

$$
f^{\prime}(x)=\left(\frac{1}{3} x^{-1}\right)^{\prime}=\frac{1}{3}\left(x^{-1}\right)^{\prime}=-\frac{1}{3} x^{-2}=-\frac{1}{3 x^{2}}
$$

as expected. We could have also used Quotient Rule to see

$$
f^{\prime}(x)=\frac{0 \cdot 3 x-1 \cdot 3}{(3 x)^{2}}=-\frac{3}{3 \cdot 3 x^{2}}=-\frac{1}{3 x^{2}}
$$

again, as expected.
2. Find the slope of the tangent line to

$$
g(x)=\frac{1}{2} x^{3} e^{x}
$$

at the point $x=2$.
Solution: To find the slope of the tangent line we first find the derivative.
We employ product rule

$$
\begin{aligned}
g^{\prime}(x) & =\left(\frac{1}{2} x^{3} e^{x}\right)^{\prime} \\
& =\frac{1}{2}\left(x^{3} e^{x}\right)^{\prime} \\
& =\frac{1}{2}\left(3 x^{2} e^{x}+x^{3} e^{x}\right) .
\end{aligned}
$$

Since the derivative gives the slope of the tangent line at a give point x to find the desired slope we compute

$$
\begin{aligned}
g^{\prime}(2) & =\frac{1}{2}\left(3 \cdot 4 e^{2}+8 e^{2}\right) \\
& =10 e^{2} .
\end{aligned}
$$

And so the slope of the tangent line to $g(x)$ at $x=2$ is $10 e^{2}$.

