Math 190 Quiz 5: Solutions

The quiz is 20 minutes long and has two questions. No calculators or other aids are permitted. Show all of your work for full credit.

Questions:

1. Find all values of b so that

$$
\int_{1}^{b}(2 x-5) d x=0 .
$$

Solution1:

Let us compute the integral

$$
0=\int_{1}^{b}(2 x-5) d x=x^{2}-\left.5 x\right|_{1} ^{b}=b^{2}-5 b-\left(1^{2}-5(1)\right)=b^{2}-5 b+4
$$

So now we seek solutions, b, to

$$
0=b^{2}-5 b+4
$$

which we can find after factoring

$$
0=b^{2}-5 b+4=(b-1)(b-4)
$$

And so we have the two solutions $b=1$ and $b=4$.

Solution2:

Alternatively we can notice that

$$
\int_{1}^{1}(2 x-5) d x=0
$$

and so $b=1$ is a solution. To find the other we can graph the function and look for some symmetry. With a careful plot (see figure) of the graph we notice that if we take $b=4$ then the total area under the curve will be zero (since the positive and negative area will cancel exactly).

2. Compute the following integral

$$
\int \sin x \cos x d x
$$

Solution1: We can compute this integral by making the substitution $u=\sin x$. In this way $d u=\cos x d x$. There follows

$$
\int \sin x \cos x d x=\int u d u=\frac{u^{2}}{2}+C=\frac{\sin ^{2} x}{2}+C .
$$

Solution2: We can also compute this integral by making the substitution $u=\cos x$. In this way $d u=-\sin x d x$. There follows

$$
\int \sin x \cos x d x=-\int u d u=-\frac{u^{2}}{2}+C=-\frac{\cos ^{2} x}{2}+C .
$$

Note that while it may not look like it both of these functions are anti-derivatives to $f(x)=\sin x \cos x$. Observe that they differ only by a constant. We know that

$$
\sin ^{2} x+\cos ^{2} x=1
$$

so

$$
\begin{aligned}
& \sin ^{2} x=1-\cos ^{2} x \\
& \frac{\sin ^{2} x}{2}=\frac{1}{2}-\frac{\cos ^{2} x}{2}
\end{aligned}
$$

Solution3: We can also solve this integral by doing an integration by parts. Let $u=\sin x$ and $d v=\cos x d x$. Then we have $d u=\cos x d x$ and $v=\sin x$ so

$$
\int \sin x \cos x d x=\sin ^{2} x-\int \sin x \cos x d x
$$

We can now rearrange the above as

$$
\begin{aligned}
& \int \sin x \cos x d x+\int \sin x \cos x d x=\sin ^{2} x \\
& 2 \int \sin x \cos x d x=\sin ^{2} x \\
& \int \sin x \cos x d x=\frac{\sin ^{2} x}{2}+C .
\end{aligned}
$$

Solution4: We could also use the trig identity $\sin x \cos x=\sin 2 x / 2$ to compute this integral

$$
\int \sin x \cos x d x=\frac{1}{2} \int \sin 2 x d x=-\frac{1}{2} \frac{\cos 2 x}{2}+C=-\frac{1}{4} \cos 2 x+C
$$

Again note that this function differs from the other functions by a constant. For example if we employ the trig identity

$$
\cos 2 x=\cos ^{2} x-\sin ^{2} x
$$

we see

$$
\begin{aligned}
-\frac{1}{4} \cos 2 x & =-\frac{1}{4}\left(\cos ^{2} x-\sin ^{2} x\right) \\
& =\frac{1}{4}\left(\sin ^{2} x-\cos ^{2} x\right) \\
& =\frac{1}{4}\left(\sin ^{2} x-\left(1-\sin ^{2} x\right)\right) \\
& =\frac{1}{4}\left(\sin ^{2} x-1+\sin ^{2} x\right) \\
& =\frac{1}{4}\left(2 \sin ^{2} x-1\right) \\
& =\frac{\sin ^{2} x}{2}-\frac{1}{4}
\end{aligned}
$$

