Science One Integral Calculus

January 2018

Happy New Year!

Differential Calculus central idea: The derivative

What is the derivative f'(x) of a function f(x)?

Differential Calculus central idea: The derivative

What is the derivative f'(x) of a function f(x)?

- $rac{1}{2}$ rate of change of f (with respect to x) at x
- rightharpoonup (geometrically) slope of tangent line to graph of f at x

What is the mathematical definition of f'(x)?

Differential Calculus central idea: The derivative

What is the derivative f'(x) of a function f(x)?

- $rac{1}{2}$ rate of change of f (with respect to x) at x
- rightharpoonup (geometrically) **slope of tangent** line to graph of f at x

What is the mathematical definition of f'(x)? It's a limit!

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} \quad \text{or equivalently} \quad \lim_{\Delta x\to 0} \frac{\Delta f}{\Delta x}$$

Integral Calculus central idea: The Definitive Integral

What is the definite integral $\int_a^b f(x)dx$?

Integral Calculus central idea: The Definitive Integral

What is the definite integral $\int_a^b f(x)dx$?

- accumulated change corresponding to a rate-of-change function f E.g., if f = v(t) velocity, then the definitive integral is the distance traveled in the time interval $\Delta t = b a$.
- (geometrically) **area** of region under f curve above [a, b] (if f(x) > 0 on [a, b])

What is the mathematical definition of $\int_a^b f(x)dx$?

Integral Calculus central idea: The Definitive Integral

What is the definite integral $\int_a^b f(x) dx$?

- accumulated change corresponding to a rate-of-change function f E.g., if f = v(t) velocity, then the definitive integral is the distance traveled in the time interval $\Delta t = b a$.
- (geometrically) **area** of region under f curve above [a, b] (if f(x) > 0 on [a, b])

What is the mathematical definition of $\int_a^b f(x)dx$? It's a limit!

Our main goals this term...

- Give a precise definition of the definite integral
- Find a **fundamental connection** with the derivative (The Fundamental Theorem of Calculus)
- Master integration techniques to compute complicated antiderivatives
- Apply integration to a variety of science contexts

➤ Today's goal: Give a mathematical definition of the definite integral

The area problem: Find the area of the region S that lies under the curve y = f(x) from a to b.

What is area?

Easy for regions with straight sides...not so easy for regions with curved sides!

We need a precise definition of area.

Example: Find the area under $f(x) = x^2$ on [0, 1].

Worksheet

We found that the sum S_n of areas of n rectangles converges as $n \to \infty$ We define area as a limit, $S = \lim_{n \to \infty} S_n$

Consider the region under the curve y = f(x) above [a, b].

• Take n vertical strip of equal width $\Delta x = (b-a)/n$ n intervals $[x_0, x_1], [x_1, x_2], [x_2, x_3], ... [x_{i-1}, x_i], ... [x_{n-1}, x_n].$

Consider the region under the curve y = f(x) above [a, b].

- Take n vertical strip of equal width $\Delta x=(b-a)/n$ n intervals $[x_0,x_1],[x_1,x_2],[x_2,x_3],... [x_{i-1},x_i],... [x_{n-1},x_n].$ i-th strip has area $\Delta x \ f(x_i^*)$
- Sum the areas of all rectangles

$$S_n = \Delta x f(x_1^*) + \Delta x f(x_2^*) + \dots + \Delta x f(x_i^*) + \dots + \Delta x f(x_n^*)$$

where sample point x_i^* is *any* number in the interval $[x_{i-1}, x_i]$.

Sigma Notation

Convenient notation for writing long sums.

E.g. the sum of the first 10 squares can be written as

$$1 + 2^2 + 3^2 + \dots + 10^2 = \sum_{k=1}^{10} k^2$$

This reads as

" the sum from k equals 1 to 10 of k^2 "

k is called **summation index** (dummy variable).

Consider the region under the curve y = f(x) above [a, b].

- Take n vertical strip of equal width $\Delta x=(b-a)/n$ n intervals $[x_0,x_1],[x_1,x_2],[x_2,x_3],... [x_{i-1},x_i],... [x_{n-1},x_n].$ i-th strip has area $\Delta x \ f(x_i^*)$
- Sum the areas of all rectangles

$$S_n = \Delta x f(x_1^*) + \Delta x f(x_2^*) + \dots + \Delta x f(x_i^*) + \dots + \Delta x f(x_n^*)$$

where sample point x_i^* is any number in the interval $[x_{i-1}, x_i]$.

• Take the limit of the sum for $n \to \infty$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{i=1}^n f(x_i^*) \Delta x$$
 this is the desired area (if the limit exists)

Consider the region under the curve y = f(x) above [a, b].

- Take n vertical strip of equal width $\Delta x=(b-a)/n$ n intervals $[x_0,x_1],[x_1,x_2],[x_2,x_3],... [x_{i-1},x_i],... [x_{n-1},x_n].$ i-th strip has area $\Delta x f(x_i^*)$
- Sum the areas of all rectangles

$$S_n = \Delta x f(x_1^*) + \Delta x f(x_2^*) + \dots + \Delta x f(x_i^*) + \dots + \Delta x f(x_n^*)$$

where sample point x_i^* is any number in the interval $[x_{i-1}, x_i]$.

• Take the limit of the sum for $n \to \infty$

Definition: The **definite integral** of f over [a, b] is

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{i=1}^n f(x_i^*) \Delta x = \int_a^b f(x) dx$$

Consider the region under the curve y = f(x) above [a, b].

- Take n vertical strip of equal width $\Delta x = (b-a)/n$ n intervals $[x_0, x_1], [x_1, x_2], [x_2, x_3], ... <math>[x_{i-1}, x_i], ... [x_{n-1}, x_n].$ i-th strip has area $\Delta x f(x_i^*)$
- Sum the areas of all rectangles

$$S_n = \Delta x f(x_1^*) + \Delta x f(x_2^*) + \dots + \Delta x f(x_i^*) + \dots + \Delta x f(x_n^*)$$

where sample point x_i^* is any number in the interval $[x_{i-1}, x_i]$.

• Take the limit of the sum for $n \to \infty$

Definition: The definite integral of
$$f$$
 over $[a,b]$ is

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{i=1}^n f(x_i^*) \Delta x = \int_a^b f(x) dx$$

Riemann Sum