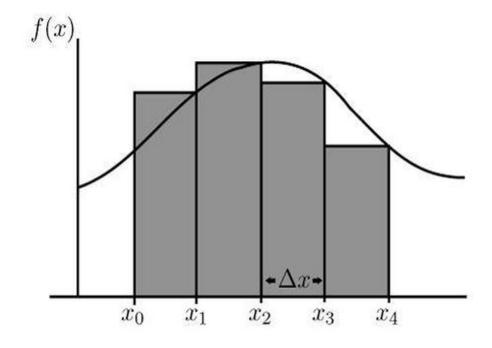
Science One Integral Calculus

January 7, 2019

Last time: approximating area

Key ideas:

- Divide region into n vertical strips
- Approximate each strip by a rectangle
- Sum area of rectangles
- Increase n (take limit for $n \to \infty$)



more formally....

Consider the region under the curve y = f(x) above [a, b].

- Take *n* vertical strips of equal width $\Delta x = (b-a)/n$
- Consider n intervals: $[x_0, x_1], [x_1, x_2], [x_2, x_3], ... [x_{i-1}, x_i], ... [x_{n-1}, x_n]$.
- Build *n* rectangles and sum all areas

 $S_n = \Delta x f(x_1^*) + \Delta x f(x_2^*) + + \Delta x f(x_i^*) + ... + \Delta x f(x_n^*) = \sum_{i=1}^n f(x_i^*) \Delta x$ where sample point x_i^* is *any* number in the interval $[x_{i-1}, x_i]$.

Defn: The area S of the region under the graph of f above [a,b] is

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) dx$$

more formally....

Consider the region under the curve y = f(x) above [a, b].

- Take *n* vertical strips of equal width $\Delta x = (b-a)/n$
- Consider n intervals: $[x_0, x_1], [x_1, x_2], [x_2, x_3], ... [x_{i-1}, x_i], ... [x_{n-1}, x_n]$.
- Build *n* rectangles and sum all areas

 $S_n = \Delta x f(x_1^*) + \Delta x f(x_2^*) + + \Delta x f(x_i^*) + ... + \Delta x f(x_n^*) = \sum_{i=1}^n f(x_i^*) \Delta x$ where sample point x_i^* is *any* number in the interval $[x_{i-1}, x_i]$.

Defn: The area S of the region under the graph of f above [a, b] is

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) dx$$

Riemann Sum

more formally....

Consider the region under the curve y = f(x) above [a, b].

- Take *n* vertical strips of equal width $\Delta x = (b-a)/n$
- Consider n intervals: $[x_0, x_1], [x_1, x_2], [x_2, x_3], ... [x_{i-1}, x_i], ... [x_{n-1}, x_n]$.
- Build *n* rectangles and sum all areas

 $S_n = \Delta x f(x_1^*) + \Delta x f(x_2^*) + + \Delta x f(x_i^*) + ... + \Delta x f(x_n^*) = \sum_{i=1}^n f(x_i^*) \Delta x$ where sample point x_i^* is *any* number in the interval $[x_{i-1}, x_i]$.

Defn: The area S of the region under the graph of f above [a, b] is

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) dx$$

Definite Integral

The Riemann sum $\sum_{i=1}^{n} f(x_i^*) \Delta x$

sample point x_i^* is any number in the interval $[x_{i-1}, x_i]$

The Riemann sum → a method for computing an **approximation** of area (approximation of a definite integral)

The Riemann sum $\sum_{i=1}^{n} f(x_i^*) \Delta x$

sample point x_i^* is *any* number in the interval $[x_{i-1}, x_i]$ The Riemann sum \rightarrow a method for computing an **approximation** of area

Specific types of Riemann Sums

•) if $x_i^* = x_i = a + i\Delta x$ "right Riemann sum" (height of rectangle = right edge of the strip)

-) if $x_i^* = x_{i-1} = a + (i-1)\Delta x$ "left Riemann sum" (height of rectangle = left edge of the strip)
-) if $x_i^* = (x_i + x_{i-1})/2$ " "midpoint sum"

Which of the following expressions represents the area below the curve of $\sin(5x)$ on $[0,\pi/5]$?

a)
$$\lim_{n\to\infty} \sum_{i=1}^n \frac{\pi}{n} \sin\left(\pi + \frac{5\pi i}{n}\right)$$

b)
$$\lim_{n\to\infty} \sum_{i=1}^n \sin\left(\frac{\pi i}{n}\right)$$

c)
$$\lim_{n\to\infty} \sum_{i=1}^n \frac{\pi}{5n} \sin\left(\frac{5\pi i}{n}\right)$$

d)
$$\lim_{n\to\infty} \sum_{i=1}^n \frac{\pi}{5n} \sin\left(\frac{\pi i}{n}\right)$$

e)
$$\lim_{n\to\infty} \sum_{i=1}^n \frac{\pi}{n} \sin\left(\frac{5\pi i}{n}\right)$$

Defn: The area S of the region under the graph of f above [a, b] is

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) dx$$

Definite Integral

$$\int_{a}^{b} f(x) dx$$

integrand

Defn: The **area** S of the region under the graph of f above [a, b] is

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) dx$$

Definite Integral

$$\int_{a}^{b} f(x) dx$$

limits of integration

Defn: The area S of the region under the graph of f above [a, b] is

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) dx$$

Definite Integral

$$\int_{a}^{b} f(\mathbf{x}) d\mathbf{x}$$

(dummy) integration variable

Which of the following correctly expresses the limit

$$\lim_{n\to\infty} \sum_{i=1}^n \frac{2}{n} \cos\left(1+\frac{i}{n}\right)$$
 as a definite integral?

a)
$$\int_0^2 \cos(x) dx$$

b)
$$\int_0^2 \cos(x+1) \, dx$$

c)
$$\int_1^3 \cos(x) \, dx$$

$$d) \int_1^2 \cos(x) \, dx$$

$$e) \int_{1}^{2} 2\cos(x) dx$$

Can you think of another integral that can be expressed as the limit above?

Defn: The **area** S of the region under the graph of f above [a, b] is

$$S = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) dx$$

Definite Integral

The above definition is for f(x) > 0 for all x in [a, b].

What if f(x) < 0 for some x in [a, b]?

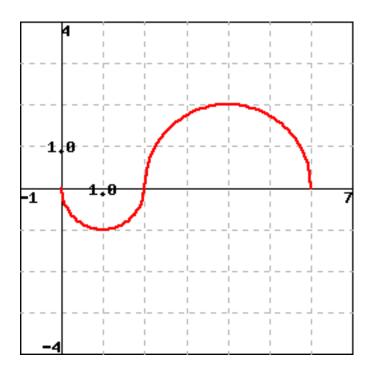
What if f(x) < 0 on [a, b]?

If f(x) < 0 on [a, b] then curve is below x-axis...

- the height of the approximating rectangles is *negative...*
- the Riemann sum is the sum of the *negatives* of the areas of the rectangles that lie below the x-axis (and above the curve)

$$\int_{a}^{b} f(x)dx < 0$$
 "signed area"

$$\left| \int_a^b f(x) dx \right|$$
 = area of region below x-axis, above curve $y = f(x)$ on $[a, b]$



Using the definition of integral as area, evaluate

$$\int_0^2 f(x) dx =$$

- *a*) π
- b) $\pi/2$
- c) Not defined
- $d) \pi$ $e) \pi/2$

When does the limit of Riemann sums exist?

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \int_a^b f(x) dx$$

Thrm: If f(x) is defined on [a,b] and

- f(x) is continuous on [a, b], or
- f(x) has a finite number of jump discontinuities on [a,b]

then the limit of Riemann sums exists and we say

f(x) is **integrable** on [a,b].

Evaulate $\int_1^4 |x-3| dx$

Evaulate
$$\int_{1}^{4} |x-3| dx = \int_{1}^{3} (3-x) dx + \int_{3}^{4} (x-3) dx =$$

[using areas] =
$$\frac{1}{2}$$
 (2)(2) + $\frac{1}{2}$ (1)(1) = $\frac{5}{2}$

Some properties of the integral:

1)
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

2)
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

3) If
$$f(x) = c = constant$$
, then $\int_a^b c \, dx = c(b-a) \longrightarrow \int_a^b 1 \cdot dx = b-a$

Some properties of the integral:

1)
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

2)
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

3) If
$$f(x) = c = constant$$
, then $\int_a^b c \, dx = c(b-a) \rightarrow \int_a^b 1 \cdot dx = b-a$

$$\int_a^b [Af(x) + Bg(x)] dx = A \int_a^b f(x) dx + B \int_a^b g(x) dx$$

Some properties of the integral:

1)
$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

2)
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

3) If
$$f(x) = c = constant$$
, then $\int_a^b c \, dx = c(b-a)$

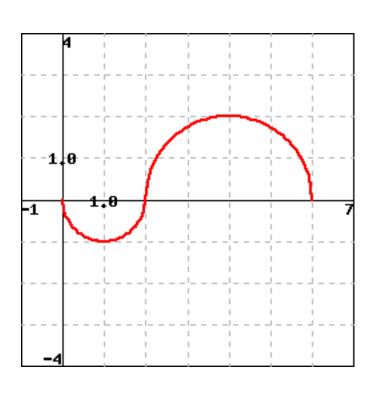
$$\int_a^b Af(x) + Bg(x) dx = A \int_a^b f(x) dx + B \int_a^b g(x) dx$$

4)
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

$$5) \int_a^a f(x) dx = 0$$

6)
$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = \int_{a}^{b} f(x)dx$$

Evaluating integrals using known areas



- 1) Evaluate $\int_{1}^{4} f(x) dx$
- a) 4π
- *b*) $3\pi/4$
- c) $5\pi/4$
- $d) 2\pi$

2) Evaluate
$$\int_{-1}^{1} 3 + \sqrt{1 - x^2} dx$$

Evaluate $\int_{-1}^{1} 3 + \sqrt{1 - x^2} dx$ (no need to find antiderivatives here)

$$\int_{-1}^{1} 3 + \sqrt{1 - x^2} dx = \int_{-1}^{1} 3 dx + \int_{-1}^{1} \sqrt{1 - x^2} dx$$

 $\int_{-1}^{1} 3 dx = \text{area rectangle of base 2 and height 3} = 2x3 = 6$

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \text{area half circle of radius 1 centred at origin} = \frac{\pi}{2}$$

$$\int_{-1}^{1} 3 + \sqrt{1 - x^2} dx = 6 + \pi/2$$

Comparison properties of the integral

- 1. If $f(x) \ge 0$ on [a,b], then $\int_a^b f(x) dx \ge 0$.
- 2. If $f(x) \ge g(x)$ on [a, b], then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.
- 3. If $m \le f(x) \le M$ on [a, b], then

$$m(b-a) \le \int_a^b f(x) dx \le M (b-a).$$

...useful to bound integrals.

Estimate $\int_0^1 e^{-x^2} dx$.

Observe e^{-x^2} is a decreasing function on [0, 1], that is $e^{-1} < e^{-x^2} < 1$

Thus

$$e^{-1}(1-0) \le \int_0^1 e^{-x^2} dx \le 1 (1-0).$$

We estimate

$$0.3679 \le \int_0^1 e^{-x^2} dx \le 1$$

Recap: What have we learned so far?

- The definite integral is defined as a limit of Riemann sums
- Riemann sums can be constructed using any point in a subinterval
- Riemann sums provide a method to approximate an integral
- Any (piece-wise) continuous function is integrable
- $\int_a^b f(x)dx$ represents a "signed area" of the region

Sad news: Evaluating the limit of Riemann sums is hard!

Good news: there is an easier way to compute integrals...

The Fundamental Theorem of Calculus

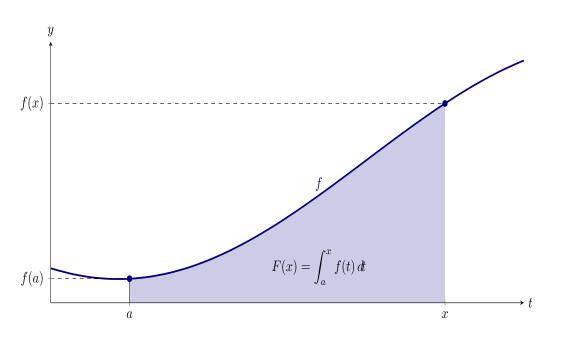
Theorem

Let f be continuous on an interval \mathcal{I} containing a.

- 1. Define $F(x) = \int_a^x f(t)dt$ on \mathcal{I} . Then F is differentiable on \mathcal{I} with F'(x) = f(x).
- 2. Let G be any antiderivative of f on \mathcal{I} . Then for any b in \mathcal{I}

$$\int_{a}^{b} f(t)dt = G(b) - G(a)$$

FTC part I: The area function



if f(x) is continuous on \mathcal{I} let F(x) = area under f(x) on [a, x] $F(x) = \int_{a}^{x} f(t)dt$

F(x) is called "accumulation function"

In science there are many functions defined as an integral:

$$Erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

(probability and statistics)

$$Si(x) = \int_0^x \frac{\sin t}{t} dt$$

(signal processing)

$$S(x) = \int_0^x \sin(t^2) dt$$

$$C(x) = \int_0^x \cos(t^2) \, dt$$

(theory of diffraction)

$$ln(x) = \int_1^x \frac{1}{t} dt$$
 for $x > 0$

FTC part I: The derivative of the area function

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Proof

Suppose f is continuous (and positive) on an interval containing a.

What is the area below the curve y = f(t) on [a, x]?

Area =
$$F(x) = \int_a^x f(t)dt$$
.

At what rate is the area changing with respect to x? $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$

Key Observation:

F(x+h)-F(x) is a difference of areas approximated by a rectangle of area $h\cdot f(x)$. Hence, in the limit $h\to 0$, we get F'(x)=f(x).

Problem: Let $F(x) = \int_{-1}^{x} t^3 dt$. Considering the interval [-1, 1], find where F is increasing? decreasing? Where does F have local extrema?

Problem: Let $F(x) = \int_{-1}^{x} t^3 dt$. Considering the interval [-1, 1], find where F is increasing? decreasing? Where does F have local extrema?

Recall: (FTC part I) If $F(x) = \int_a^x f(t)dt$, F is differentiable on [a,x] with F'(x) = f(x).

Problem: Let $F(x) = \int_{-1}^{x} t^3 dt$. Considering the interval [-1, 1], find where F is increasing? decreasing? Where does F have local extrema?

Recall: (FTC part I) If $F(x) = \int_a^x f(t)dt$, F is differentiable on [a,x] with F'(x) = f(x).

Solution:

F is increasing when F' > 0. By FTC, $F'(x) = x^3$.

 $x^3 > 0$ when $x > 0 \Rightarrow F$ is increasing on (0,1), decreasing on (-1,0).

F(0) is a local minimum.

$$F(0) = \int_{-1}^{0} t^{3} dt = ?$$

We need to compute the definitive integral. Let's use the second part of FTC.

FTC part II: $\int_a^b f(t)dt = G(b) - G(a)$, where G'(x)=f(x).

Proof:

If $F(x) = \int_a^x f(t)dt$, we know F'(x) = f(x). That is, F is an antiderivative of f.

Suppose G is any antiderivative of f on I. Then G(x) = F(x) + C for some constant C.

If
$$x = a$$
, $F(a) = 0$ so $G(a) = C$.
If $x = b$, $F(b) = \int_a^b f(t)dt \Rightarrow G(b) = F(b) + G(a) = \int_a^b f(t)dt + G(a)$.

$$\Rightarrow \int_a^b f(t)dt = G(b) - G(a).$$

...so now we know how to compute definite integrals without Riemann sums!

Previous problem:

Let
$$F(x) = \int_{-1}^{x} t^3 dt$$
. Compute F(0).

$$F(0) = \int_{-1}^{0} t^{3} dt = \frac{1}{4} t^{4} \Big|_{-1}^{0} = 0 - \frac{(-1)^{4}}{4} = -\frac{1}{4}$$

Recap:

the derivative undoes the integral, and vice versa!

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

Evaluating definite integrals involves finding antiderivatives (indefinite integrals)...instead of "integration", we should call it "antidifferentiation"!