Reminders from our discussion of series last time...

The meaning of the series
$$\sum_{j=1}^{\infty} a_j = a_1 + a_2 + a_3 + a_4 + \cdots$$
:

Let $s_n = a_1 + a_2 + \ldots + a_{n-1} + a_n$ be the *n*-th **partial sum**:

- if $\lim_{n\to\infty} s_n = s$, the series **converges**: $\sum_{j=1}^{\infty} a_j = s$.
- if $\lim_{n\to\infty} s_n$ does *not* exist, the series **diverges**.

A key example:

The **geometric series** $\sum_{j=1}^{\infty} ar^{j-1} = a + ar + ar^2 + ar^3 + ar^4 + \cdots$

- converges, if |r| < 1, with $\sum\limits_{i=1}^{\infty} ar^{j-1} = rac{a}{1-r}$
- diverges, if $|r| \ge 1$

...by the usual limit laws applied to the sequences of partial sums:

If $\sum_{j=1}^{\infty} a_j$ and $\sum_{j=1}^{\infty} b_j$ are convergent series, then so are $\sum_{j=1}^{\infty} (a_j \pm b_j)$ and $\sum_{j=1}^{\infty} (ca_j)$, with

- $\sum_{j=1}^{\infty} (a_j + b_j) = \sum_{j=1}^{\infty} a_j + \sum_{j=1}^{\infty} b_j$
- $\sum_{j=1}^{\infty} (a_j b_j) = \sum_{j=1}^{\infty} a_j \sum_{j=1}^{\infty} b_j$
- $\sum_{j=1}^{\infty} (ca_j) = c \sum_{j=1}^{\infty} a_j$

Ex:
$$\sum_{j=0}^{\infty} \frac{2^{j}-1}{3^{j}} = \sum_{j=0}^{\infty} \left(\frac{2}{3}\right)^{j} - \sum_{j=0}^{\infty} \left(\frac{1}{3}\right)^{j} = \frac{1}{1-\frac{2}{3}} - \frac{1}{1-\frac{1}{3}} = 3 - \frac{3}{2} = \frac{3}{2}$$

Does the series converge? if so, what is its value?

1.
$$3+2+\frac{4}{3}+\frac{8}{9}+\frac{16}{27}+\cdots$$

2.
$$\sum_{n=0}^{\infty} \frac{\pi^n}{3^{n+1}}$$

$$3. \sum_{j=1}^{\infty} e^{-j}$$

4.
$$\sum_{n=1}^{\infty} \arctan(n)$$

5.
$$\sum_{j=1}^{\infty} \frac{1}{j(j+2)}$$

6. 0.999999999 ...

Testing for convergence/divergence of series

Goal: check if a series converges or diverges without computing any partial sums.

The simplest such "convergence test", from last time:

Test for Divergence: if $\lim_{k\to\infty} a_k \neq 0$, $\sum_{k=1}^{\infty} a_k$ diverges.

Testing for convergence/divergence of series

Our next convergence test exploits the facts that:

• a series $\sum_{j=1}^{\infty} f(j)$ is similar to the improper integral $\int_{1}^{\infty} f(x) dx$

• integrals are easier to evaluate than sums

Integral Test: if $a_j = f(j)$ where f is positive, continuous, and decreasing on an interval $[N, \infty)$, then either

$$\sum_{j=1}^{\infty} a_j$$
 and $\int_N^{\infty} f(t)dt$ both converge, or both diverge

Warning: the integral test cannot tell you the **value** of a convergent series (only that it converges or diverges).

Convergence of p-series

 $\sum_{k=1}^{\infty} \frac{1}{k^2}$: converges, since $\int_1^{\infty} \frac{dx}{x^2}$ converges (integral test)

 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$: diverges, since $\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$ diverges (integral test)

More generally, for which values of p does the

p-series
$$\sum_{j=1}^{\infty} \frac{1}{j^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$$
 converge?

Since the integral $\int_1^\infty \frac{1}{x^p} dx$ converges if and only if p > 1:

the *p*-series converges if p>1 and diverges if $p\leq 1$.

Example: the **harmonic series** $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ is the *p*-series with p = 1, so diverges.

Example: determine the convergence of:

- $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$: $\int_{1}^{\infty} \frac{dx}{x^2+1} = \lim_{t \to \infty} \arctan(x)|_{1}^{t} = \frac{\pi}{2} \frac{\pi}{4}$ converges, \implies convergent, by integral test
- $\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$: $\int_{2}^{\infty} \frac{1}{x \ln x} dx \ (u = \ln(x)) = \int_{\ln(2)}^{\infty} \frac{1}{u} du$ diverges, \implies divergent, by integral test

Comparison Test

Just like with improper integrals, we can compare unfamiliar series with familiar ones to determine convergence:

Comparison Test: suppose $0 \le a_n \le b_n$.

- if $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges
- if $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges

Examples: convergent or divergent?

1.
$$\sum_{n=1}^{\infty} \frac{1+\sin(n)}{2^n+n}$$
 $0 \le \frac{1+\sin(n)}{2^n+n} \le \frac{2}{2^n}$, $\sum_{n=1}^{\infty} \frac{2}{2^n}$ converges (geometric, $r = \frac{1}{2}$) \Longrightarrow convergent

2.
$$\sum_{k=2}^{\infty} \frac{k}{k^2-1}$$
 $\frac{k}{k^2-1} \geq \frac{k}{k^2} = \frac{1}{k} \geq 0$, $\sum_{k=2}^{\infty} \frac{1}{k}$ diverges $(p\text{-series}, p=1) \implies$ divergent

3.
$$\sum_{j=2}^{\infty} \frac{j^2 + 3j + 1}{j^4 - j^3}$$
 terms "behave like" $\frac{1}{j^2}$ for large j ???

Limit Comparison Test

... a variant of the comparison test:

Limit Comparison Test: suppose

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c, \quad \text{for some } 0 < c < \infty.$$

Then either $\sum a_n$ and $\sum b_n$ both converge, or both diverge.

$$\begin{aligned} \textit{Example: } & \sum_{j=2}^{\infty} \frac{j^2 + 3j + 1}{j^4 - j^3} \\ & \text{compare with } \sum \frac{1}{j^2} \quad : \quad \lim_{j \to \infty} \frac{\frac{j^2 + 3j + 1}{j^4 - j^3}}{\frac{1}{j^2}} = \lim_{j \to \infty} \frac{j^4 + 3j^3 + j^2}{j^4 - j^3} = 1, \\ & \text{so by the limit comparison test, since } & \sum_{j=1}^{\infty} \frac{1}{j^2} \text{ converges} \\ & \textit{(p-series with } p = 2), \text{ our series also } & \underline{\text{converges}}. \end{aligned}$$

Determine if each series converges or diverges:

1.
$$\sum_{k=1}^{\infty} \frac{3k + \sin(k)}{k^3 e^{-k} + k^2}$$

2.
$$\sum_{n=1}^{\infty} \frac{(5n+7)^n}{(12n-1)^n}$$

3.
$$\sum_{n=2}^{\infty} \frac{n+3}{n^2 + n^2 (\ln(n))^2}$$

4.
$$\sum_{j=1}^{\infty} a_j$$
, $a_j = j$ -th digit of π

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

1.
$$\sum_{k=1}^{\infty} \frac{3k + \sin(k)}{k^3 e^{-k} + k^2}$$
. Divergent by limit comparison with $\sum_{k=1}^{\infty} \frac{1}{k}$

(harmonic, so divergent):
$$\lim_{k \to \infty} \frac{\frac{3k + \sin(k)}{k^3 e^{-k} + k^2}}{\frac{1}{k}} = \lim_{k \to \infty} \frac{3 + \frac{1}{k} \sin(k)}{k e^{-k} + 1} = 3.$$

2.
$$\sum_{n=1}^{\infty} \frac{(5n+7)^n}{(12n-1)^n}.$$
 Convergent by limit comparison with
$$\sum_{n=1}^{\infty} \left(\frac{5}{12}\right)^n$$
 (geometric, $r = \frac{5}{12}$): let $c_n = \frac{\frac{(5n+7)^n}{(12n-1)^n}}{\left(\frac{5}{12}\right)^n} = \left(\frac{1+\frac{7}{5n}}{1-\frac{1}{12n}}\right)^n$ so that
$$\ln c_n = n \left(\ln(1+\frac{7}{5n}) - \ln(1-\frac{1}{12n})\right) = \frac{\ln(1+\frac{7}{5n}) - \ln(1-\frac{1}{12n})}{\frac{1}{n}}.$$
 By I'Hôpital,
$$\lim_{n \to \infty} \ln c_n = \lim_{n \to \infty} \frac{\left(-\frac{1}{n^2}\right)\left(\frac{1}{1+\frac{7}{5n}}, \frac{7}{5} - \frac{1}{1-\frac{1}{12n}}\left(-\frac{1}{12}\right)\right)}{-\frac{1}{n^2}} = \frac{89}{60}$$

Thöpital,
$$\lim_{n\to\infty} \ln c_n = \lim_{n\to\infty}$$
 so $\lim_{n\to\infty} c_n = e^{\frac{89}{60}} \in (0,\infty)$.

3.
$$\sum_{n=2}^{\infty} \frac{n+3}{n^2+n^2(\ln(n))^2}$$
. Convergent since
$$\lim_{n\to\infty} \frac{\frac{n+3}{n^2+n^2(\ln(n))^2}}{\frac{1}{n(\ln(n))^2}} = 1$$
 and
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^2}$$
 converges by integral test:

 $\int_2^\infty \frac{dx}{x(\ln(x))^2} = \int_{\ln(2)}^\infty \frac{du}{u^2} < \infty.$

10 / 12

- 4. $\sum_{j=1}^{\infty} a_j$, $a_j = j$ -th digit of π . Divergent since $\lim_{j \to \infty} a_j \neq 0$. (If the digits of π tended to 0, π would be rational.)
- 5. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. None of our tests so far work on this stay tuned...

Each time a ball falls to the ground from height h, it rebounds to height rh, for some 0 < r < 1. It is dropped initially from height H.

- Find the total distance the ball travels.
- Find the total time the ball travels for.