Taylor Polynomials
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“Lennard-Jones potential”

1T, 2

rlo

e what is the equilibrium separation r? r=rp,

e what happens if r is changed slightly from r = r,?

e how might you estimate the frequency at which it will vibrate?
approximate the graph of V/(r) near r = r,, by a parabola, which
generates “simple harmonic motion”.

Goal for today: find the polynomial of given degree which “best”
approximates a function f(x) “near” a point x = a.
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Taylor Polynomials

e the constant function best approximating f(x) near x = a is:
To(x) = f(a)

e the linear function best approximating f(x) near x = a is:
Ti(x) = L(x) = f(a) + f'(a)(x — a),

our old friend! In what sense is it the “best” linear approximation?

T1(a) = f(a) and T{(a) = f'(a) (gets value and slope right at a)

e what quadratic function best approximates f near x = a?
To(x) = co(x — a)? + c1(x — a) + cp, and we require:

f(a) = T2(a) = Q

f'(a) = Ty(a) = (2ea(x — @) + c1)|x=a2 = 1

f'(a) = T{(a) =2c, = c = 3f"(a)

= Ta(x)="f(a)+1'(a)(x —a)+ %f”(a)(x —a)?.

)
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Taylor Polynomials
e which cubic polynomial best approximates f near x = a?
T3(x) = c3(x — a)3 + ca(x — a)? + c1(x — a) + co, and we require:
f(a)=Ts(a) =
f'(a) = T4(a) = (Bca(x — a)? + 2ca(x — @) + c1)|x=a = 1
f(a) = T{(a) =b6a(x —a)+ 200 = o= %f"(a)
f"(a) = T{'(a) = 6c3 = c3=¢f"(a)
T5(x) = f(a) + f'(a)(x — a) + 3f"(a)(x — a)* + ¢ "(a)(x — a)* .

e the polynomial of degree n which best approximates f near a is

The n-th order Taylor polynomial for f about x = a:

To(x) = f(a)+f’(a)(x—a)~|—”2(3)(x—a)2+- R f(r:!(a) (x—a)"

— factorial: n! = n(n—1)(n—2)---(2)(1)
— n-th derivative: f®)(a) = f"(a), f*)(a) = f"(a), etc.
— can check: Tp(a) = f(a), T'(a) = f'(a), ..., T"(a) = F(")(a).
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Taylor Polynomials

Example: Find the third order Maclaurin polynomial (Taylor poly.
centred at a = 0) for sin(x). Use it to approximate sin(1/4).

"

f(x) =sin(x), f'(x)=cos(x), f"’(x)= —sin(x)7 f (x) = —cos(x)
0 =0. FO)=1 F©0)=0, F"O)=-1
— T3(x) = £(0) + F/(0)x + 2 +fT(°>x3=x—%x3-

sin(1/4) = T3(1/4) = 3 — &35 = 3%
(calculator: sin(1/4) ~ 0.247404 while 5 ~ 0.247396)

Example: Find Maclaurin polynomials (as many terms as you can —
try to find a pattern) for: 1. sin(x) 2. cos(x) 3. e* 4. 11

1. sin(x)Nx—lx3+éx5—i,x7+ .

2. cos(x)~1-— x+41|x4—éx6

3. ele—l—x+%x2+§x +HX

4. A mlex+x3+x3+xM+
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Taylor Polynomials

Vie

2 LV =e ()P - 2()°]

1 “Lennard-Jones potential”

-1 .

2 o

What is the :“requency of small vibrations of r near rpjn?

e find the second-order Taylor polynomial for V/(r) at r = ry,:
Vi(r) == [—12 (%’”)13 +12 (%’")7} so V/(rm) = 0 (of course!)
Vi(r) = 125 [13 (%)M = 7 (2)°], s0 V/(rm) = 725

V(r) = Ta(r) = V(rm) + V(rn)(r — i) + 2V (1) (7 — rm)?
=|—e+ 36%(r — rm)2

> Y o A | N 12 =
e Newton, for F =r —ry,:  G7=—V/(r)= _T%r
N : _ /12
so F(t) ~ Asin(kt) + B cos(kt) with frequency | k = mrniq
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Taylor Polynomials: Size of the Error

Recall: our error formula for the linear approximation
f(x) = L(x) = T1i(x) = f(a) + f'(a)(x — a):

()~ Talx) = 5 7()(x — o)

for some ¢ between a and x. This generalizes to:

1
(n+1)!

for some ¢ between a and x.

f(x) — Ta(x) = F () (x — a)™ !

Example: give a rough estimate of the error in

sin(H)~ T3(})=1-1(lp=2

e error = sin(%) - T3(%) = %f(“)(c)(%)“, for some 0 < ¢ < %
o f(x) =sin(x), F®)(x) =sin(x), so: 0 < F*¥(c) <1

e = 0<error < %(3)*~0.00016 (true error: 0.000008)
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Indeterminate Forms and L'Hépital’s Rule
Example: Evaluate (in several different ways):

. xsin(x)
lim ———.
x—0 1 — cos(x)
T x sin(x) X(X——x +-)
e Taylor: I|m0 T—cos(x) — )!@01 (-t L)
— i X2—5X4+"' — i 1—%X2+ 1
TS Bt T e T
x sin(x) xsin(x) 14-cos(x)
° )I(T;'O 1—cos(x) — )l(f;'o 1—cos(x) 1+cos(x)
— lim xsin(x)(14cos(x)) ™ x sin(x)(14cos(x))
A S = Rl sin’(x)
= lim [525] lim (14 cos(x) = 1-2 =2
aA - xsin(x) d(xsm(x))
e |'Hopital: I|m01 —cos(x) — >|<[>no 7dx(1 cos(x)
— lim sin(x)—xcos(x) __ — Iim < (sin(x)+x cos(x))
Cx=0  sinl) x—0 & sin(x)
— lim 2cos(x)+xsin(x) _ 2 2

cos(x) 1
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Theorem: (L’Hépital’s rule) Let f and g be differentiable
functions for x near a, with g’(x) # 0 there (except possibly
at x = a). If limy_,f(x) = lime,8(x) =0 (orocoor —
o0), then

if this limit exists, or is 0.

A rigorous proof can be given using the Mean Value Theorem
(next topic), but we can easily demonstrate the idea using Taylor
approximation: if f(a) = g(a) =0, then
f(x)=f'(a)(x —a) + %(x —a)4---
gix)=g'(a)(x—a)+i(x—a2+-,
L f(x) o @)t g (x—a)
>|<[>na g(x) — >|<[>na g'(a)(x—a)—f—%(x_a)Z_i_...

i @3 fa)
= lm i — e (fE@)#0)

10



Indeterminate Forms and L'Hépital’s Rule

. 2—x2-2
Example: lim 2-x7—2cos(x)
X

x—=0 )
— lim 72X~|:;225In(X) — lim 72+26cos(x) — lim fZSén(x) —0
x—0 X x—0 X x—0

L'Hépital's rule holds for indeterminate forms [3] or [2]. But

what about other indeterminate possibilities?

Try:

. . X . X 1
lim x*, lim x*, lim —
x—0+ x—0+ x=1\x—1 In(x)



Indeterminate Forms and L'Hépital’s Rule

o limy_ 04 xX* i let y = x¥, so In(y) = xIn(x) = I;(/):() (2]
I'Hopital: limy_o % = limy_ 0+ %/X)@ = limy—0+(—x) =0

so: limy_04 x* = limy_ 0+ en(y) = glimx—orInly) — g0 —

o limy_op x) : since limy_ o4 x* =1, this is NOT
indeterminate! lim,_ o, x*) = (limy oy x)lmx—0r X" — ol = @

i X . . xIn(x)—x+1
I'Hopital: lim,y1 PR = limaon B3 sttt [§]

TR . . | . 1
['Hopital again: limy_1 ln(xr)‘% = limy_y1 W - _
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