Example: find a function F(x) with $F'(x) = \sin(2x)$:

$$\frac{d}{dx}\left[-\frac{1}{2}\cos(2x)\right] = -\frac{1}{2}(-\sin(2x))(2) = \sin(2x)$$

An **antiderivative** of a function f is a function F satisfying F'(x) = f(x).

Why might we need to find antiderivatives?

- to recover position from velocity, velocity from acceleration, etc.
- more generally, to solve ODEs (coming soon...)
- to compute definite integrals (Fundamental Theorem of Calculus)

Example: Find *ALL* antiderivatives of sin(2x):

$$\frac{d}{dx}\left[-\frac{1}{2}\cos(2x)+C\right]=\sin(2x)$$
 for any constant C

<u>Theorem</u>: any two antiderivatives of a given function differ by a constant.

"Proof": If
$$F' = f$$
 and $G' = f$, then
$$\frac{d}{dx} [F(x) - G(x)] = F'(x) - G'(x) = f(x) - f(x) = 0,$$
 and so $F(x) - G(x) = C$ for some constant C .

The **indefinite integral** $\int f(x)dx$ of a function f is its general antiderivative:

$$\int f(x)dx = F(x) + C$$

where F'(x) = f(x).

Example:
$$\int \sin(2y)dy = -\frac{1}{2}\cos(2y) + C$$

Try these:

- 1. $\int (t^2 + t^3) dt$
- 2. $\int \left(\sqrt{s} + \frac{2}{s^2}\right) ds$
- 3. $\int e^{\cos(3x)}\sin(3x)\ dx$
- 4. $\int \cos(x^2) dx$

1.
$$\int (t^2 + t^3) dt = \frac{1}{3}t^3 + \frac{1}{4}t^4 + C$$

$$(Why? \frac{d}{dt} \left[\frac{1}{3}t^3 + \frac{1}{4}t^4 + C \right] = \frac{1}{3} \cdot 3t^2 + \frac{1}{4} \cdot 4t^3 + 0 = t^2 + t^3)$$

2.
$$\int \left(\sqrt{s} + \frac{2}{s^2}\right) ds = \int \left(s^{\frac{1}{2}} + 2s^{-2}\right) ds = \frac{2}{3}s^{\frac{3}{2}} - 2s^{-1} + C$$
(Why?
$$\frac{d}{ds} \left[\frac{2}{3}s^{\frac{3}{2}} - 2s^{-1} + C\right] = \frac{2}{3} \cdot \frac{3}{2}s^{\frac{1}{2}} - 2 \cdot (-1)s^{-2} + 0 = \sqrt{s} + \frac{2}{s^2}$$
)

3.
$$\int e^{\cos(3x)} \sin(3x) dx = -\frac{1}{3}e^{\cos(3x)} + C$$

$$(Why? \frac{d}{dx} \left[-\frac{1}{3}e^{\cos(3x)} + C \right] = -\frac{1}{3}e^{\cos(3x)} \cdot (-\sin(3x)) \cdot 3 + 0 = e^{\cos(3x)}\sin(3x))$$

4. $\int \cos(x^2) dx$...stay tuned...

Example: Find the height as a function of time of an object shot straight up into the air with speed v_0 (no drag):

- acceleration: a(t) = -g (constant)
- velocity: $v(t) = \int a(t)dt = \int (-g)dt = -gt + C_1$ $v_0 = v(0) = C_1 \implies C_1 = v_0$
- height: $h(t) = \int v(t)dt = \int (-gt + v_0)dt = -\frac{1}{2}gt^2 + v_0t + C_2$ $0 = h(0) = C_2 \implies h(t) = -\frac{1}{2}gt^2 + v_0t$ (until it hits the ground!)