Science One Math

November 15, 2018

Today we will

prove an important fact in Calculus (one that you have just used in the test):

If f'(x) > 0 for all x in an interval, f is **increasing** on that interval.

If f'(x) < 0 for all x in an interval, f is **decreasing** on that interval.

Identify points where a function may attain local maximum (minimum) values

Defn: *f* is **increasing** on an interval *I* **if** for every a < b in $I \Rightarrow f(a) < f(b)$.

Theorem: If f'(x) > 0 for all x in I, f is increasing on I.

Proof: Consider a < b for any a and b in \mathcal{I} . By MVT, there is a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a} > 0$$

We chose b > a, so from above it follows f(b) - f(a) > 0, that is $f(b) > f(a) \Rightarrow f$ is increasing on \mathcal{I}

Shape of a curve

What are the main features of this curve?

- Intervals of increase or decrease
- a local extreme value (minimum)
- asymptotic behaviour for $r \to \infty$

Lennard-Jones potential

Local Extreme Values (maxima and minima)

Defn: Let f(x) be defined on [a, b]. Consider a < c < b, we say f(x) has

- a local (or relative) **minimum** at x = c if $f(x) \ge f(c)$ for all a < x < b,
- a local (or relative) **maximum** at x = c if $f(x) \le f(c)$ for all a < x < b.

A known fact (can be proved without calculus):

If f has a maximum (or minimum) at x = c and f'(c) exists, then f'(c) = 0. (Fermat's Theorem)

Points where f' = 0 are good candidates for local extrema. Are there other points where f could attain a local extremum? Good candidates for extrema are points where f' = 0 and f' DNE.

Defn: A critical number of f is a number c (in the domain of f) such that either f'(c) = 0 or f'(c) is undefined.

Does *f* always attain a local extremum at a critical number? Not always!

e.g.
$$f(x) = x^3$$
 no extremum at $x = 0$ even though $f'(0) = 0$.

We need a <u>test</u> to identify which critical numbers correspond to local extrema of f. \Im first derivative test

second derivative test (next week!)