Science One Math

November 20, 2018

Shape of a curve

Last time:

- candidates for local extrema are **critical points**.
- a critical point of f is not necessarily an extreme value of f.
- need a method for testing critical points.

Last time: Good candidates for extrema are points where f' = 0 and f' DNE.

Defn: A **critical number** of f is a number c (in the domain of f) such that either f'(c) = 0 or f'(c) is undefined.

Does f always attain a local extremum at a critical number?

Last time: Good candidates for extrema are points where f' = 0 and f' DNE.

Defn: A critical number of f is a number c (in the domain of f) such that either f'(c) = 0 or f'(c) is undefined.

Does *f* always attain a local extremum at a critical number? Not always!

e.g. $f(x) = x^3$ no extremum at x = 0 even though f'(0) = 0.

We need a <u>test</u> to identify which critical numbers correspond to local extrema of f. \Im first derivative test \Im second derivative test

How to locate local/relative extrema

Observation: If f(c) is a local maximum, then

f(x) is increasing for x < c and decreasing for x > c.

If f(c) is a local minimum, then

f(x) is **decreasing** for x < c and **increasing** for x > c.

min

First derivative test for extrema

If x = c is a **critical number** of f and:

f'(x) > 0 for x < c and f'(x) < 0 for $x > c \Rightarrow f(c)$ is a **maximum**

f'(x) < 0 for x < c and f'(x) > 0 for $x > c \Rightarrow f(c)$ is a **minimum**

Suppose that g(x) is a function undefined at x = 2 and continuous for all $x \neq 2$ whose derivative is

$$g'(x) = \frac{(x+4)(x-1)^2}{x-2}$$

- A. g has a local maximum at x = -4 and a local minimum at x = 2.
- *B.* g has a local maximum at x = -4 and no local minima.
- C. g is increasing for all $x \neq 2$.
- D. g has a local minimum at x = 2 and no local maxima.

Second derivative test for extrema

Observation 1: "....when f'(x) > 0 for x < c and f'(x) < 0 for x > c..." means "...when f' decreases as x increases through c..."

Observation 2: If we apply the theorem "If f'(x) > 0 for all x in \mathcal{I} , f is increasing on \mathcal{I} " to the first derivative function, we have

"if (f')'(x) > 0 for all x in $\mathcal{I} \Rightarrow f'$ is increasing on \mathcal{I} "

⇒ Observation 1 and 2 lead to the second-derivative test for extrema

2nd-derivative test for extrema: If x = c is a critical number of f and If f''(c) < 0 on an interval containing $c \Rightarrow f(c)$ is a **maximum**. If f''(c) > 0 on an interval containing $c \Rightarrow f(c)$ is a **minimum**.

More about the shape of a curve: Concavity

Observation 2: If f''(x) > 0 for all x in $\mathcal{I} \Rightarrow f'$ is increasing on \mathcal{I} . What does this information tell us about the shape of f? \Rightarrow the slope of tangent is increasing, the graph of f bends upwards \Rightarrow the graph of f is **above tangent line** at any point in \mathcal{I}

Proof : For any a < x < b, by MVT there is a number c in (a, x) such that $\frac{f(x)-f(a)}{x-a} = f'(c) > f'(a)$ because f' is increasing, it follows

$$f(x) - f(a) > f'(a)(x - a)$$

eq. of tangent at x = a $f(x) > f(a) + f'(a)(x - a) \longleftarrow$ *Defn* f is **concave up** on \mathcal{I} if f' is increasing on \mathcal{I} (above tangent) f is **concave down** on \mathcal{I} if f' is decreasing on \mathcal{I} (below tangent)

Concavity Test

If f''(x) > 0 for all x in $\mathcal{I} \Rightarrow f$ is concave up on \mathcal{I} .

If f''(x) < 0 for all x in $\mathcal{I} \Rightarrow f$ is concave down on \mathcal{I} .

Defn If the concavity changes as x goes through c, f(c) is called **inflection point.**

Example: Find the concavity and all inflection points of $f(x) = x^{\frac{1}{3}}(x+4)$.

Example: Find the concavity and all inflection points of $f(x) = x^{\frac{1}{3}}(x+4)$.

$$f'(x) = \frac{4(x+1)}{3x^{2/3}} \text{ and } f''(x) = \frac{4x-8}{9x^{5/3}}.$$

$$f''(x) = 0 \text{ at } x = 2 \text{ and } f''(x) \text{ DNE at } x = 0.$$

x	(−∞, 0)	0	(0,2)	2	(2,∞)
Sign of f"	+	DNE	-	0	+
Behaviour of <i>f</i>	CONC. UP	I.P.	CONC. DOWN	I.P.	CONC. UP

Sketch a graph of y = f(x).

Example: Find the concavity and all inflection points of $f(x) = x^{\frac{1}{3}}(x+4)$.

$$f'(x) = \frac{4(x+1)}{3x^{2/3}}$$
 and $f''(x) = \frac{4x-8}{9x^{5/3}}$.
 $f''(x) = 0$ at $x = 2$ and $f''(x)$ DNE at $x = 0$.

x	(−∞, 0)	0	(0,2)	2	(2,∞)
Sign of f"	+	DNE	—	0	+
Behaviour of f	CONC. UP	I.P.	CONC. DOWN	I.P.	CONC. UP

Sketch a graph of y = f(x).

Х	(−∞, −1)	-1	(-1,0)	0	(0, +∞)
Sign of f'	_	0	+	DNE	+
Behaviour of <i>f</i>	DEC	MIN	INC	Vertical tangent	INC

Find all local extrema and discuss concavity of the following functions

 $y = x \ln x$

$$y = \frac{x^2}{x^2 - a^2}$$
 where *a* is a constant

$$y = x^2 e^x$$