
Science	One	
Mathematics
September	18,	2018



Last	time:	How	to	evaluate	limits

• Use	basic	limits	and	the	limit	laws,	when	they	apply…
• If	the	limit	 laws	don’t	apply,	different	strategies	are	possible.



When	the	limit	laws	fail:
How	to	handle	indeterminate	form		!

!
• Rewrite	function	in	simplified	form

• Factor	and	cancel,	e.g.	 lim
%→'(

('*%+)('-%)
'*.%-%+

• Multiply	by	conjugate,	e.g.	lim
/→.

/-.*.
/*.

• Expand	parenthesis	and	simplify,	e.g.	lim
0→!

.-0 +*1
0

• Split	the	limit	into	right-hand	and	left-hand	limits,	e.g.	lim
2→3

2*3
|2*3|

• (later	in	the	term	we’ll	apply	l’Hopital’s rule)	



Another	case	when	the	limit	laws	are	not	
useful…

lim
/→!

𝑥. sin '
/+

A. DNE	because	sine	oscillates	around	0.

B. DNE	because	 '
/+

is	undefined	at	𝑥 = 0.

C. equals	(lim
/→!

𝑥.)(lim
/→!

sin '
/+

	) = 0.

D. equals	sin	(1).
E. None	of	the	above.
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A	useful	theorem

Squeeze	Theorem
Consider	three	functions	such	that
𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) for	all	𝑥 near	a	point	𝑎
(except	perhaps	at	𝑥 = 𝑎).	

If		lim
/→A

𝑓(𝑥) = lim
/→A

ℎ(𝑥) = L,	then		lim
/→A

𝑔(𝑥) = 𝐿



lim
/→!

𝑥. sin '
/+

=	?

We	observe	that	−1 ≤ sin '
/+

≤ 1 for	all	𝑥 ≠ 0.	

For	all	𝑥 ≠ 0, 𝑥. > 0.	 It	follows	−𝑥. ≤ 𝑥. sin '
/+

≤ 𝑥..	

Since		lim
/→!

𝑥. = 0 = lim
/→!

−𝑥.,				by	the	squeeze	theorem	

it	follows	

lim
/→!

𝑥. sin '
/+

=	0.



Continuous	Functions
Defn:	A	function	is	continuous at	𝑥 = 𝑎

if	𝑓(𝑎) exists	and	lim
/→A

𝑓 𝑥 = 𝑓(𝑎).

Implications:	
Ø𝑓(𝑎) is	defined
Ølim
/→A

𝑓 𝑥 exists		(right	and	left	limits	are	the	same)
Øthe	value	of	the	limit	equals	the	value	of	the	function



4	types	of	discontinuity:

1. hole		(can	be	eliminated)			
2. jump
3. vertical	asymptote
4. (infinite	oscillations)



Which	of	the	following	functions	is	NOT	continuous	at	𝑥 = 0?

A) 𝑔(𝑥) 	= 	𝑥|𝑥|

B) 𝑓(𝑥) 	= K𝑥 sin
'
/
			if	𝑥 ≠ 0

0														if	𝑥 = 0

C) ℎ(𝑥) = 	 /
|/|
		

D) Both	A	and	C

E) All	three	A,	B,	C.	



Which	of	the	following	functions	is	NOT	continuous	at	𝑥 = 0?

A) 𝑔(𝑥) 	= 	𝑥|𝑥|

B) 𝑓(𝑥) 	= K𝑥 sin
'
/
			if	𝑥 ≠ 0

0														if	𝑥 = 0

C) 𝒉(𝒙) = 	 𝒙
|𝒙|
		

D) Both	A	and	C

E) All	three	A,	B,	C.	



You	decide	to	estimate	e2	by	squaring	longer	decimal	
approximations	of	e =	2.71828...

A. This	is	a	good	idea	because	e is	a	rational	number.
B. This	is	a	good	idea	because	y =	x2 is	a	continuous	function
C. This	is	a	good	idea	because	y =	ex is	a	continuous	function.	
D. This	is	a	bad	idea	because	e is	irrational.
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Problem
The	gravitational	attraction	of	the	earth	on	a	mass	𝑚 at	a	distance	𝑟 from	
the	centre of	the	earth	is	a	continuous	function	𝐹 𝑟 defined	for	𝑟 ≥ 0 by	

𝐹 𝑟 = S
TUV+

W+
			𝑖𝑓		𝑟 ≥ 𝑅	

𝑚𝑘𝑟			𝑖𝑓	0 ≤ 𝑟 < 𝑅
Find	the	constant	k. (December	Exam	2017)
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𝐹 𝑟 has	possibly	a	discontinuity	at	𝑥 = 𝑅. To	eliminate	the	discontinuity,	
we	require	 lim

W→V\
𝐹(𝑟) = lim

W→V(
𝐹(𝑟),	that	is	 lim

W→V\
𝑚𝑘𝑟 = lim

W→V(
TUV+

W+
,	

𝑚𝑘𝑅 = TUV+

V+
,	thus	𝑘 = U

V
.



Two	useful	properties	of	continuous	functions
• Intermediate	Value	property
• Extreme	Value	property	(will	discuss	this	later	in	the	term)



Intermediate	Value	Theorem
If 𝑓 is	continuous	on	the	interval	[𝑎, 𝑏]	and	𝑁 is	any	value	between		
𝑓(𝑎)		and		𝑓(𝑏),	where	𝑓 𝑎 ≠ 	𝑓 𝑏 ,
then
there	is	a	number		𝑐 between		𝑎 and		𝑏 such	that		𝑓(𝑐) 	= 	𝑁.	



Intermediate	Value	Theorem
If 𝑓 is	continuous	on	the	interval	[𝑎, 𝑏]	and	𝑁 is	any	value	between		
𝑓(𝑎)		and		𝑓(𝑏),	where	𝑓 𝑎 ≠ 	𝑓 𝑏 ,
then
there	is	a	number		𝑐 between		𝑎 and		𝑏 such	that		𝑓(𝑐) 	= 	𝑁.

• In	other	words,		f	must	cross	the	horizontal	line	y	=	N at	least	once	
in	the	interval		[a,	b].
• If	N=	0,	the	intermediate	value	property	implies	that		f has	at	least	
one	root 𝑥 = 𝑐 in	[a,	b].



For	the	function	𝑓 𝑥 = 𝑥. − b
/
+ 1, over	which	

of	the	following	intervals	does	the	IVT	guarantee	a	root?		

A. [-3,	-1]
B. [-1,	1]
C. [1,	3]	
D. Both A	and C
E. All	three intervals
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Problem	(2015	October	midterm)

Show	there	are	at	least	two	solutions	to			 /
.d
= '

3
for		0	 ≤ 	𝑥	 ≤ 	4.

A	more	challenging	problem:
Show	that	along	the	equator	there	are	two	diametrically	opposite	sites	
that	have	exactly	the	same	temperature	at	the	same	time.	
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Show	there	are	at	least	two	solutions	to			 /
.d
= '

3
for		0	 ≤ 	𝑥	 ≤ 	4.

Let	𝑓 𝑥 = /
.d
− '

3
.	We	observe	𝑓 𝑥 is	continuous	on	[0, 4],	and

𝑓 0 = −'
3
< 0 and	𝑓 4 = '

1
− '

3
< 0 and	𝑓 1 = '

.
− '

3
> 0,	thus	by	IVT	

there	must	a	number	𝑐' in	[0,1] such	that	𝑓 𝑐' = 0 and	a	number	𝑐. in	
[1,4] such	that	𝑓 𝑐. = 0.	It	follows	the	original	equation	has	at	least	two	
solutions	𝑥 = 𝑐' and	𝑥 = 𝑐. in	[0, 4].
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Problem
Show	that	along	the	equator	there	are	two	diametrically	opposite	sites	
that	have	exactly	the	same	temperature	at	the	same	time.
Solution
Suppose	𝑇 𝜃 gives	the	temperature	at	a	point	on	the	equator	with	
angle	𝜃.	Note	𝑇 𝜃 is	a	periodic	and	continuous	on	[0, 2𝜋],	that	is	
𝑇 0 = 𝑇 2𝜋 .We	need	to	prove	the	equation	𝑇 𝜃 = 𝑇 𝜃 + 𝜋 has	
at	least	one	solution.	
Consider	the	function	𝑓(𝜃) = 𝑇 𝜃 − 𝑇 𝜃 + 𝜋 .	We	observe	𝑓(𝜃) is	
also	periodic	and	continuous	on	[0, 2𝜋].	In	particular,	on	[0, 𝜋] we	have	
𝑓 0 = 𝑇 0 − 𝑇 𝜋 and	
𝑓 𝜋 = 𝑇 𝜋 − 𝑇 2𝜋 = 𝑇 𝜋 − 𝑇 0 = −𝑓(0)
Suppose	𝑓 0 > 0,	then	𝑓 𝜋 < 0.	By	IVT,	there	is	a	value	𝜃∗ in	[0, 𝜋]
such	that	𝑓 𝜃∗ = 0.	It	follows	𝑇 𝜃∗ = 𝑇 𝜃∗ + 𝜋 .


