This midterm has **9 questions** on **11 pages**, for a total of 100 points.

Duration: 150 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; for changes of variables state how the variables are related. For integration by parts, state what the parts are. Answers without justifications will not be accepted.
- Continue on blank pages if you run out of space.
- This is a closed-book examination. **None of the following are allowed**: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

First name:	Last name:
Student #:	Bamfield #:
"	
Signature:	

Question:	1	2	3	4	5	6	7	8	9	Total
Points:	15	15	9	6	9	10	12	12	12	100
Score:										

- 1. This question has three independent parts.
 - (a) If f is continuous and $\int_0^9 f(x)dx = 4$, find $\int_0^3 x f(x^2)dx$.

(b) Find f'(2) if $f(x) = e^{g(x)}$ and $g(x) = \int_2^x \frac{t}{1+t^4} dt$.

(c) A function y = f(x) is always positive and satisfies the equation y' = xy for all x. Find f such that f(0) = e.

2. Compute the following integrals.

(a)
$$\int_0^1 \frac{x}{\sqrt{4-x^2}} dx$$

(b)
$$\int_0^\infty \frac{dx}{(x+1)(x+3)}$$

(c)
$$\int (x+1)e^{-2x}dx$$

3. Determine whether each series converges. Justify your answer.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$$

4. Find the following limits:

(a)
$$\lim_{n\to\infty} \frac{3^n}{n!}$$

(b) $\lim_{n \to \infty} (5n)^{1/n}$

- 5. (a) Find the Taylor series centred at x = 0 for the function $J(x) = \int_0^x \frac{e^t 1}{t} dt$.
 - (b) Determine the interval of convergence for the series obtained in part (a).

- 6. (a) Compute the area of the shape bounded in the quadrant x, y > 0 by the curve $\sqrt{x} + \sqrt{y} = 1$.
 - (b) Compute the volume of a solid of revolution obtained by revolving the shape described above around the x-axis.

- 7. (a) Alice and Bob wish to build a sand castle, in the shape of a cone, with radius 1m and height 3m. What is the total amount of work needed to lift the sand for the project? Gravity is g and the density of sand is ρ .
 - (b) If Alice constructs the foundation up to a height of 1 metre, and Bob finishes the construction, who does more physical work? Who uses a larger amount of sand? Justify your answer.

- 8. The famous golfer $Cat\ Forests$ hits a ball and it lands at a random distance X from the target, where X has probability density $2kxe^{-kx^2}$ for some constant k.
 - (a) Find a formula for the probability of the ball landing at distance at most L from the target.
 - (b) Cat hits within at most 10 metres 3/4 of the time. Find k.
 - (c) If a shot misses by more than 20 metres, it lands in the lake. Find the probability that Cat's ball lands in the water.

- 9. A bag-pipe player blows air into the bag at a constant rate of 10 litres/minute. The bag has a constant volume of 20 litres. The piper had a bottle of Scotch (18 year old Clynelish), and so his breath contains 2% alcohol.
 - (a) Give a differential equation for the concentration of alcohol in the bag at time t.
 - (b) Find a solution to this equation.
 - (c) At what time does the concentration reach 1%?
 - (d) At what time does the concentration reach 2%?

Trigonometric identities For any θ :

$$\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}$$

$$\cos^2 \theta + \sin^2 \theta = 1$$

$$\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

Probability For a random variable taking values between a and b (possibly $a = -\infty$ and $b = \infty$):

Mean is $\mu = \int_a^b x f(x) dx$.

Standard deviation is σ where $\sigma^2 = \int_a^b (x - \mu)^2 f(x) dx$.

The median is M such that $\int_a^M f(x)dx = \frac{1}{2}$.

Generalized Fundamental Theorem of Calculus

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(t)dt = b'(x)f(b(x)) - a'(x)f(a(x)).$$

Centre of mass $\overline{x} = \frac{M_x}{M}$, where $M = \int f(x)dx$ and $M_x = \int x f(x)dx$.

Taylor polynomials and series

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$$

$$f(x) = T_n(x) + R_n(x) \quad \text{where} \quad R_n(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x - a)^{n+1}$$

The following are series around x = 0.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$$

Trigonometric substitutions The following are sometimes useful:

If
$$u = \tan(x/2)$$
 then $dx = \frac{2du}{1+u^2}$ and $\sin x = \frac{u^2}{1+u^2}$ and $\cos x = \frac{1-u^2}{1+u^2}$.

If $u = a \sin \theta$ then $du = a \cos \theta d\theta$ and $\sqrt{a^2 - u^2} = \cos \theta$.